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Preface
This report is an unofficial list of errata for Pattern Recognition and Machine Learning or PRML
by Bishop (2006). In this report, I have compiled only errata that are not (yet) listed in the
official errata document (Svensén and Bishop, 2011) at the time of this writing. Currently,
there are three versions of the official errata document, corresponding to the first (2006),
second (2007), and third (2009) printings of PRML; consult the support page for how to
identify which printing your copy of PRML is from.1

I have tried to follow the terminology and the notation used in PRML and the official
errata as closely as possible. In particular, when specifying the location of an error, I follow
the notational conventions (such as “Paragraph 2, Line −1”) adopted by Svensén and Bishop
(2011). As the official errata document “is intended to be complete,” this report also tries to
correct even trivial typographical errors as well.

PRML is arguably such a great textbook in the field ofmachine learning that it is extremely
helpful and easier to understand than any other similar account. That said, there are a few
subtleties that some readers might have hard time to appreciate. In hopes to help such
readers get out of struggle or obtain a better grasp on some important concepts, I have also
included in this report some comments and suggestions for improving the readability to
which I would have liked to refer when I first read PRML.

It should be noted that the readers of the Japanese edition of PRML will find its support
page (in Japanese) useful. Along with other information such as the contents, it lists errata
specific to the Japanese edition as well as some additional errata for the English edition,
which have also been included in this report for the reader’s convenience.

I welcome all comments and suggestions regarding this report; please send me any such
feedback via email or, preferably, by creating an “issue” or a “pull request” at the following
GitHub repository

https://github.com/yousuketakada/prml_errata

where you can find the source code of this report as well as other supporting material.

1The last line but one of the bibliographic information page (the page immediately preceding the dedication
page) of my copy of PRML reads “9 8 7 (corrected at 6th printing 2007).” Note that, although it says it is from
the “6th printing,” it is actually from the second printing according to the official errata document (Svensén and
Bishop, 2011) so that I refer to Version 2 of the official errata.
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Corrections and Comments
Page xi

Paragraph −2, Line 1: |f(x)/g(x)| should read |g(x)/f(x)| (with the functions swapped).
Moreover, the limit we take is not necessarily the one specified in the text, i.e., x→∞, but is
often implied by the context (see below).

Big O notation The big O notation g(x) = O (f(x)) generally denotes that |g(x)/f(x)| is
bounded as x→ cwhere, if c is not given explicitly, c = 0 for a Taylor series such as (2.299)
or (D.1); or c =∞ for an asymptotic series such as (10.241) or for computational complexity
(see, e.g., Section 5.2.3), for example. See Olver et al. (2018) for other asymptotic and order
notations.

Page 5

Equation (1.1): The lower ellipsis (. . .) should be centered (· · · ).2 Specifically, (1.1) should
read

y(x,w) = w0 + w1x+ w2x
2 + · · ·+ wMx

M =
M∑
j=0

wjx
j. (1)

Page 10

The text after (1.4): The lower ellipsis (. . .) should be centered (· · · ).

Page 14

Equation (1.8): Note that the conditional probability p (Y = yj|X = xi) = nij/ci is well-defined
only when p(X = xi) = ci/N > 0.

Page 18

Equation (1.27): It should be noted that the transformation g : Y → X must be bĳective or,
equivalently, invertible in general in order for the change of variables (1.27) to be meaningful
where X and Y are the domains of the distributions px(·) and py(·), respectively.3 This

2The LATEX command \cdots or, with the amsmath or mathtools package, \dots (in most cases) will do.
3A function f : X → Y is said to be bĳective (or one-to-one correspondence) if, for any y ∈ Y , there exists a

unique x ∈ X such that y = f(x). Note also that bĳectivity is equivalent to invertibility: A function f : X → Y
is bĳective if and only if f is invertible, i.e., there exists an inverse function f−1 : Y → X (which is, of course, also
bĳective) such that f−1 ◦ f is the identity function on X and f ◦ f−1 is the identity function on Y (an identity
function is a function that maps every input to itself).
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can be easily understood by noting that, if, for any measurable4 subset X0 ⊂ X of X , the
preimage5 Y0 = g−1(X0) ⊂ Y of X0 under the transformation g is again a measurable subset
of Y (such a function g is said to be a measurable function; and every continuous function is,
in fact, measurable) and we can make the change of variables x = g(y) as∫

X0

px(x) dx =
∫
Y0

px(x)
∣∣∣∣dxdy

∣∣∣∣ dy (3)

=
∫
Y0

px(g(y)) |g′(y)| dy (4)

then we can identify the integrand of the right hand side as py(y).
It is interesting to note here that we can represent the change of variables in terms of

expectation (Watanabe, 2012) so that

py(y) = Ex
[
δ
(
y − g−1(x)

)]
(5)

where δ(·) is the Dirac delta function (Olver et al., 2018) and y = g−1(x) is the inverse function
of x = g(y).6

Multivariate change of variables Similarly to the univariate case, the multivariate version
of the change of variables formula is given by

p(y) = p(x)
∣∣∣∣det

(
∂x
∂y

)∣∣∣∣ (9)

where we have again assumed that the transformation between x and y is bĳective as well as
differentiable; and ∂x/∂y = (∂xi/∂yj) is the Jacobian matrix (C.18).

4A measurable set is such that we can consider its “size” (or measure) in some sense so that the integration
over it is meaningful; this is a concept formally defined in a branch of mathematics called measure theory
(see, e.g., Feller (1971) in the context of probability theory and Tao (2011) for an introduction to Lebesgue
integration), which however “lies outside the scope of [PRML]” (Page 19, Paragraph 3, Line −5). The reason
why we restrict ourselves to measurable subsets here is, of course, that we indeed have “pathological” ones
that are not measurable. However, since it is safe to say that all the sets we meet in practice are measurable
(for example, measurable subsets of R include all the open sets (a1, b1), (a2, b2), . . . and their countable
unions (a1, b1) ∪ (a2, b2) ∪ . . . ), we omit the “measurable” qualifier for brevity in the rest of this report.

5Let f : X → Y be some function from a set X (the domain) to another set Y (the codomain). The preimage (or
inverse image) of a subset Y0 ⊂ Y of the codomain Y under f is defined by

f−1(Y0) ≡ {x ∈ X | f(x) ∈ Y0} (2)

so that f−1(Y0) ⊂ X is a subset of the domain X .
6In fact, we have

Ex

[
δ
(
y0 − g−1(x)

)]
=
∫
δ
(
y0 − g−1(x)

)
px(x) dx (6)

=
∫
δ (y0 − y) px(g(y)) |g′(y)|dy (7)

= px(g(y0)) |g′(y0)| (8)

where we have made the change of variables x = g(y).
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Page 19

Equation (1.32): Similarly to the discrete case (1.8), the conditional probability density

p(y|x) = p(x, y)
p(x) (10)

is well-defined only for x such that p(x) > 0. Note however that we can assume that the
product rule (1.32) itself holds in general (see below).

Conditional as a random variable The conditional probability p(y|x) (or, more generally,
the conditional expectation Ey [·|x]7) can be regarded as a random variable dependent on
the random variable x on which conditioned. As such, we see that there is no particular
problem if p(y|x) is undefined for x such that p(x) = 0; for such x, we can define p(y|x)
arbitrarily as long as we have p(y|x)p(x) = 0, say, p(y|x) ≡ 0 although this is clearly not a
valid probability because

∫
p(y|x) dy = 0 6= 1.

Note also that, if y is independent of x, then the conditional p(y|x) is well-defined
regardless of x so that p(y|x) = p(y) and, again, the product rule (1.32) holds, which, in this
case, reduces to p(x, y) = p(x)p(y).

Page 33

The line after (1.73): The best-fit log likelihood p (D|wML) should read ln p (D|wML).

Page 42

Paragraph 1, Line 1: “the class j” should read “class Cj .”

Page 44

Paragraph 2, Line −3: Insert a space before the sentence starting “There has been. . . ” (the
third printing only).8

Page 46

Equation (1.85): A period (.) should terminate (1.85).

Page 47

Paragraph 1, Line −1: Et [t|x] should read Et [t|x] (the subscript should be the vector t).

7The conditional probability density py|x (y|x) can be written as a conditional expectation so that

py|x (y0|x) = Ey [δ(y0 − y)|x] (11)

where δ(·) is the Dirac delta function (Olver et al., 2018).
8Something strange must have happened in the third (2009) printing, leading to some spacing issues where

a sentence ends with a reference number such as “Figure 1.27.” We can also find other “regression” errors in
the third printing. Such errors are marked “the third printing only” in this report.
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Page 47

Equation (1.90): The quantity var [t|x] is the conditional variance, which is defined similarly to
the conditional expectation (1.37) so that

var [t|x] = E
[
(t− E [t|x])2∣∣x] (12)

where we have omitted the subscript t in what should be Et [·|x]

Page 51

Equation (1.98): Following the notation (1.93) for the entropy, we should write the left hand
side of (1.98) as H[X] instead of H[p] so that

H[X] = −
∑
i

p(xi) ln p(xi). (13)

As suggested in Appendix D, if we regard the (differential) entropy H[·] as a functional, then
we see that “the entropy could equally well have been written as H[p]” (Page 703, Paragraph 1,
Lines −2 and −1). However, it is probably better to maintain the notational consistency here.

Pages 55 and 56

The text around (1.114): There are some inaccuracies in the definitions and the properties of
convex and strictly convex functions. First, a convex function is not necessarily differentiable
(consider, e.g., the absolute value function f(x) = |x|, which is convex but not differentiable
at x = 0). Second, even for twice differentiable functions, strict positivity of the second
derivative is not necessary for convexity nor for strict convexity. Third, the condition for
strict convexity that “the equality [in (1.114)] is satisfied only for λ = 0 and λ = 1” (Page 56,
Paragraph 1, Line −4) is meaningless because the equality holds for any λwhen a = b.

In the following, instead of correcting these errors one by one, I would like to present
slightly more general definitions for convex and strictly convex functions where we let the
parameter λ vary only on the open set (0, 1), rather than on the closed set [0, 1] as in PRML,
in order to avoid edge cases. I also give some well-known properties regarding convex
and strictly convex functions that are twice differentiable (which I think are intended to be
addressed in PRML).

Convexity and strict convexity Let f : X → R be a real-valued, continuous9 function
defined on some convex set X such that, if x0, x1 ∈ X , then (1 − λ)x0 + λx1 ∈ X for any
λ ∈ (0, 1). The function f(x) is said to be convex if

f((1− λ)x0 + λx1) 6 (1− λ)f(x0) + λf(x1) (14)

9Strictly speaking, we do not need to assume continuity here because convexity implies continuity. More
specifically, a convex function f : X → R is continuous on the entire domain X (except the boundary ∂X ).
To see this, consider three points A,B,C on the convex curve y = f(x) whose x values are x0, x1, x2 ∈ X ,
respectively, where we assume that x0 < x1 < x2. First, we see from convexity that B lies below the line AC .
Again from convexity, we have (i) that, on the interval [x0, x1], the curve must be below AB and above BC;
and (ii) that, on the interval [x1, x2], the curve must be below BC and above AB. These requirements (i) and
(ii) imply continuity of f(x) at x = x1. Since x1 can be any element in X (except ∂X ), we see that f(x) is
continuous (on X \ ∂X ).

5



for any x0, x1 ∈ X and λ ∈ (0, 1). If the equality in (14) holds only when x0 = x1, then f(x)
is said to be strictly convex.

If f(x) is twice differentiable, the following properties hold:

(i) The function f(x) is convex if and only if the second derivative f ′′(x) is nonnegative
for all x ∈ X .

(ii) If f ′′(x) is strictly positive for all x ∈ X , then f(x) is strictly convex. Note however that
the converse of this does not hold (consider, e.g., f(x) = x4, which is strictly convex
but f ′′(0) = 0).

It is easy to see that convexity implies f ′′(x) > 0. In fact, from Taylor’s theorem,10 we can
write f ′′(x) in the form

f ′′(x) = lim
h→0

f(x− h)− 2f(x) + f(x+ h)
h2 (18)

where we see that the right hand side is nonnegative from the inequality condition (14) in
which we let λ = 1/2 and xi = x+ (2i− 1)hwhere i = 0, 1. To show the converse, we again
make use of Taylor’s theorem and expand f(x) around xλ = (1−λ)x0 +λx1 so that we have

f(xi) = f(xλ) + (xi − xλ)f ′(xλ) + (xi − xλ)2

2 f ′′(ξi) (19)

for some ξi between xλ and xi. With this expansion, we can write the right hand side of (14)
in the form

(1− λ)f(x0) + λf(x1) = f(xλ) + λ(1− λ)(x1 − x0)2

2 {λf ′′(ξ0) + (1− λ)f ′′(ξ1)} (20)

from which we see that f ′′(x) > 0 implies convexity and also that f ′′(x) > 0 implies strict
convexity.

Page 56

Equation (1.116): In general, we cannot interpret λi in Jensen’s inequality (1.115) as the
probability distribution over a discrete random variable x such that λi ≡ p(x = xi) because,
since (1.115) holds for any {xi}, we can take, say, xi = xj and λi 6= λj where i 6= j, assigning
different probabilities to the same value of x. Actually, (1.116) is a special case of (1.115). An
equivalent of (1.115) in terms of random variables can be derived as follows.

10Taylor’s theorem (Abramowitz and Stegun, 1964) states that an n times differentiable function f(x) can be
expanded around a given point x0 in the form

f(x) = f(x0) + (x− x0)f ′(x0) + (x− x0)2

2 f ′′(x0) + · · ·+ (x− x0)n−1

(n− 1)! f (n−1)(x0) +Rn(x) (15)

where the remainder term Rn(x) (known as the Lagrange remainder) satisfies

Rn(x) = (x− x0)n

n! f (n)(ξ) (16)

for some ξ between x0 and x. If we expand f(x) around x with displacement ±h, then the Taylor series
expansion (up to the third order term) is given by

f(x± h) = f(x)± hf ′(x) + h2

2 f
′′(x)± h3

3! f
(3)(x) +O

(
h4) . (17)
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y

x y

y = f(x)

Ez [ξ(z)]

Ez [f (ξ(z))]

f (Ez [ξ(z)])

Figure 1 A physical “proof” of Jensen’s inequality (MacKay, 2003). Let us suppose that we have a set of
point massesmi = p(z = zi), denoted by filled blue circles (•) with areas proportional tomi, and place
them at the corresponding locations (x, y) = (ξ(zi), f(ξ(zi))) on a convex curve y = f(x). The center of
gravity of those masses, which is (Ez [ξ(z)] ,Ez [f (ξ(z))]), denoted by a cross sign (×), must lie above
the convex curve and thus right above the point (Ez [ξ(z)] , f (Ez [ξ(z)])) on the curve, denoted by a filled
square (�), showing Jensen’s inequality (21). One can also see that, if f(·) is strictly convex, the equality
in (21) implies that ξ(z) is almost surely constant (it is trivial to show that the converse is true).

Jensen’s inequality in terms of random variables In order to interpret (1.115) probabilis-
tically, we instead introduce another set of underlying random variables z such that
λi ≡ p(z = zi) and a function ξ(·) such that xi ≡ ξ(zi), giving a result slightly more
general than (1.116)

f (Ez [ξ(z)]) 6 Ez [f (ξ(z))] (21)

where f(·) is a convex function but ξ(·) can be any. Moreover, if f(·) is strictly convex, the
equality in (21) holds if and only if ξ(z) is constant with probability one or almost surely,11
meaning that there exists some constant ξ0 such that ξ(z) = ξ0 on the range of z almost
everywhere, in which case we have Ez [ξ(z)] = ξ0 and the both sides of (21) equal f(ξ0). See
Figure 1 for an intuitive, physical “proof” of the inequality (21).

Since the random variables z as well as their probability p(z) can be chosen arbitrarily, it
makes sense to write z implicit in (21), giving a simpler form of Jensen’s inequality

f (E [ξ]) 6 E [f (ξ)] . (22)

For continuous random variables, we have

f

(∫
ξ(x)p(x) dx

)
6
∫
f (ξ(x)) p(x) dx (23)

where we have used x to denote the underlying random variables for which we take the
expectations. Bymaking use of (23), one can show that the Kullback-Leibler divergence KL (p‖q)
given by (1.113) satisfies Gibbs’s inequality

KL (p‖q) > 0 (24)

with equality if and only if p(x) = q(x) almost everywhere. See the following erratum for
more details.

11Here, the proviso almost surely (often abbreviated as a.s.) or almost everywhere (a.e.) means that there may
be some exceptions but they can occur only with probability zero (or measure zero) so that we can safely ignore
them; this is a concept formally defined in a branch of mathematics called measure theory (Feller, 1971; Tao,
2011). As in PRML, we omit such “almost” provisos for brevity in the rest of this report.
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Page 56

Equation (1.118): There are some difficulties in the derivation (1.118) of Gibbs’s inequality (24).
First, the quantity ξ(x) = q(x)/p(x) is undefined forx such that p(x) = 0. Second, the convex
function f(ξ) = − ln ξ is undefined for ξ = 0, which occurs where q(x) = 0 and p(x) > 0. In
order to avoid these (potential) difficulties, we shall take a different approach (MacKay, 2003;
Kullback and Leibler, 1951) in which we make use of Jensen’s inequality (23) with respect to
q(x) where we identify f(ξ) = ξ ln ξ and ξ(x) = p(x)/q(x). Note that we can safely proceed
with this approach because we can assume q(x) > 0 without loss of generality (see below).

In the following, we first show Gibbs’s inequality (24) along this line, after which we
also see that the Kullback-Leibler divergence KL (p‖q) is convex in the sense that it satisfies
the inequality (14) with respect to the pair of the distributions (p, q). Finally, we give
an alternative proof of Gibbs’s inequality (24) in terms of a generalized version of the
Kullback-Leibler divergence such that it is extended for unnormalized distributions.

A proof of Gibbs’s inequality in terms of Jensen’s inequality Let us first examine the
behavior of the integrand of the Kullback-Leibler divergence KL (p‖q)

p(x) ln p(x)− p(x) ln q(x) (25)

where q(x) or p(x) vanishes. We notice that, if q(x) → 0 for x such that p(x) > 0, the
integrand (25) diverges so that KL (p‖q)→∞. On the other hand, the integrand (25) always
vanishes for x such that p(x) = 0 regardless of the values of q(x).12 Therefore, in order for
KL (p‖q) to be well-defined, we must have p(x) = 0 for all x such that q(x) = 0 or, stated
differently, the support of p(x) must be contained in that of q(x), i.e.,13

supp(p) ⊂ supp(q) (26)

where supp(p) = {x | p(x) > 0} and so on.14 Note that, for two sets A and B, we write
A ⊂ B or B ⊃ A if a ∈ B for all a ∈ A so that supp(p) may equal supp(q) in (26).15

Assuming the condition (26) under which the Kullback-Leibler divergence KL (p‖q) is
well-defined, we can restrict the integration in KL (p‖q) only over the support Ω ≡ supp(q)

12Recall that we have defined 0 log2 0 ≡ 0 or, equivalently, 0 ln 0 ≡ 0 (Page 49, Paragraph 2, Line −2) so that
the entropy in “bits” (1.93) or “nats” (13) is well-defined.

13One can understand (26) intuitively from the perspective of information theory as follows. As we have
seen in Section 1.6.1, the Kullback-Leibler divergence KL (p‖q) can be interpreted as the average amount
of information (in nats) wasted to encode samples generated from the source p with an encoder optimized
for q. In order for this relative entropy KL (p‖q) to be well-defined (i.e., in order that we can encode every
sample), the support of the source pmust be contained in that of the encoder q. Note also that, in the context of
variational inference in which we minimize KL (p‖q) by optimizing p given q (variational Bayes) or q given p
(expectation propagation), the property (26) is referred to as zero-forcing or zero-avoiding because q = 0 implies
p = 0 or, equivalently, p > 0 implies q > 0 (see Section 10.1.2).

14Here, we define the support supp(f) of a real-valued function f : X → R by

supp(f) ≡ {x ∈ X | f(x) 6= 0} (27)

so that, for a probability density function p : X → [0,∞), we have supp(p) = {x ∈ X | p(x) > 0}.
15In fact, a set A equals another set B or A = B if and only if A ⊂ B and A ⊃ B.
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Figure 2 Plot of f(x) = x ln x. The function f(x) is a strictly convex function defined over [0,∞) where
we have defined f(0) = 0 ln 0 ≡ 0. The curve y = f(x) takes the minimum at (x, y) =

(
e−1,−e−1).

The roots (the values of x such that f(x) = 0) are x = 0 and x = 1.

of q(x). Identifying f(ξ) = ξ ln ξ (see Figure 2) and ξ(x) = p(x)/q(x), we have

KL (p‖q) =
∫

Ω
q(x)p(x)

q(x) ln
{
p(x)
q(x)

}
dx (28)

=
∫

Ω
q(x)f (ξ(x)) dx (29)

> f

(∫
Ω
q(x)ξ(x) dx

)
(30)

= f

(∫
Ω
p(x) dx

)
(31)

= f(1) = 0 (32)

where we have used Jensen’s inequality (23) with respect to q(x) (instead of p(x)). Note that,
since q(x) > 0 for all x ∈ Ω, we see that ξ(x) = p(x)/q(x) > 0 is well-defined for all x ∈ Ω
and so is f (ξ(x)) = ξ(x) ln ξ(x). Since f(ξ) is strictly convex, the equality KL (p‖q) = 0
holds if and only if ξ(x) = p(x)/q(x) is constant for all x ∈ Ω, which, together with (26),
yields the equality condition that p(x) = q(x) for all x.

Convexity of Kullback-Leibler divergence Let us next consider the weighted sum of two
well-defined Kullback-Leibler divergences KL (p1‖q1) ,KL (p2‖q2) <∞

S ≡ λKL (p1‖q1) + (1− λ) KL (p2‖q2) (33)

= λ

∫
Ω1

p1(x) ln
{
p1(x)
q1(x)

}
dx + (1− λ)

∫
Ω2

p2(x) ln
{
p2(x)
q2(x)

}
dx (34)

where λ ∈ (0, 1). Here, we again assume (26) for each pair of the distributions (pi, qi), i.e.,
pi(x) = 0 for all x /∈ Ωi ≡ supp(qi) where i = 1, 2. Writing

a1 ≡ λp1(x), a2 ≡ (1− λ)p2(x)
b1 ≡ λq1(x), b2 ≡ (1− λ)q2(x)

(35)
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and noting that ai = bi = 0 outside Ωi and bi > 0 otherwise, we have

S =
∫

Ω1

a1 ln a1

b1
dx +

∫
Ω2

a2 ln a2

b2
dx (36)

=
∫

Ω1\Ω2

a1 ln a1

b1
dx +

∫
Ω2\Ω1

a2 ln a2

b2
dx +

∫
Ω1∩Ω2

[
a1 ln a1

b1
+ a2 ln a2

b2

]
dx (37)

>
∫

Ω1∪Ω2

(a1 + a2) ln a1 + a2

b1 + b2
dx (38)

= KL (λp1 + (1− λ)p2‖λq1 + (1− λ)q2) (39)

from which we see that KL (p‖q) is convex with respect to (p, q). Here, we have used the
inequality16

a1 ln a1

b1
+ a2 ln a2

b2
= (b1 + b2)

[
b1

b1 + b2
f

(
a1

b1

)
+ b2

b1 + b2
f

(
a2

b2

)]
(41)

> (b1 + b2) f
(
a1 + a2

b1 + b2

)
(42)

= (a1 + a2) ln a1 + a2

b1 + b2
(43)

where we have again used Jensen’s inequality (21) with f(ξ) = ξ ln ξ.
We also see that (i) convexity of KL (p‖q) with respect to (p, q) implies (ii) convexity of

KL (p‖q) with respect to p. Although the former convexity (i) is not strict in general (consider,
e.g., the case where Ω1 ∩ Ω2 = ∅), the latter convexity (ii) can be shown to be strict with a
similar discussion as above (where we let q1 = q2 and thus Ω1 = Ω2), i.e., KL (p‖q) is strictly
convex with respect to p so that

λKL (p1‖q) + (1− λ) KL (p2‖q) > KL (λp1 + (1− λ)p2‖q) , λ ∈ (0, 1) (44)

with equality if and only if p1 = p2.

Extended Kullback-Leibler divergence Let us now definewhat we call the extended Kullback-
Leibler divergence (Minka, 2005; Zhu and Rohwer, 1995) as

EKL (p̃ ‖q̃ ) ≡
∫
p̃(x) ln

{
p̃(x)
q̃(x)

}
dx +

∫
{q̃(x)− p̃(x)} dx. (45)

Note that the definition (45) of the extendedKullback-Leibler divergence includes a correction
term of the form

∫
{q̃(x)− p̃(x)} dx so that it applies to unnormalized distributions p̃(x)

and q̃(x). One can easily see that, for correctly normalized distributions p(x) and q(x), the
correction term vanishes so that

KL (p‖q) = EKL (p‖q) . (46)

16The inequality used here is a special case of the log sum inequality, which states that, for nonnegative ai, bi,∑
i

ai ln ai

bi
> a ln a

b
(40)

with equality if and only if there exists some constant c such that ai = cbi for all i where a =
∑

i ai and
b =

∑
i bi.
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The extended Kullback-Leibler divergence (45) can also be written in the form

EKL (p̃ ‖q̃ ) =
∫
p̃(x)F

(
ln
{
p̃(x)
q̃(x)

})
dx (47)

where
F (t) = t+ e−t − 1, t ∈ (−∞,∞). (48)

Since F (t) > 0 with equality if and only if t = 0,17 we see that an analogue of Gibbs’s
inequality (24) holds also for the extended Kullback-Leibler divergence (45), i.e., we have

EKL (p̃ ‖q̃ ) > 0 (49)

with equality if and only if p̃(x) = q̃(x) for all x. Thus, we see that Gibbs’s inequality (24)
for the ordinary Kullback-Leibler divergence (1.113) can also be shown from the Gibbs’s
inequality (49) for the extended Kullback-Leibler divergence (45) via the relationship (46).

It is interesting to note here that, if two (normalized) distributions p(x) and q(x) are close
so that p(x) ≈ q(x), then the Kullback-Leibler divergence between p(x) and q(x) can be
approximated (Watanabe, 2012) as

KL (p‖q) ≈ 1
2

∫
p(x) {ln p(x)− ln q(x)}2 dx (50)

where we have again used (46) and the Taylor expansion F (t) ' t2/2 of F (t) around t = 0.18
Moreover, one can easily see from the linearity of the correction term that the extended

Kullback-Leibler divergence (45) enjoys convexity similarly to the ordinary Kullback-Leibler
divergence (1.113). Specifically, EKL (p̃ ‖q̃ ) is (i) convex with respect to (p̃, q̃ ) and (ii) strictly
convex with respect to p̃.

Page 59

Exercise 1.7, Line 2: “To do this consider, the. . . ” should be “To do this, consider the. . . ”

Page 61

Exercise 1.15, Line −1: Add a period (.) at the end of the last sentence.

Page 62

Exercise 1.18, the text after (1.142): “Gamma” should read “gamma” (without capitalization).

Page 64

Exercise 1.28, Line 1: In Section 1.6, the quantity h(x) is introduced as a measure of the
information gained on observing the random variable x, whereas the entropy is the average
of h(x) over x. The first sentence should thus read, e.g., “In Section 1.6, we introduced the
idea of entropy as the average of the information h(x) gained. . . ”

17Note that F (t) is a strictly convex function (because F ′′(t) > 0) and takes the minimum F (t) = 0 at t = 0.
18Although the sign ' is used for any type of approximate equality in PRML, I make some (soft) distinction

between ' and ≈ in this report: I use ' for series expansions where approximation can be exact at some point;
and ≈ for general (e.g., numerical) approximation including the Laplace approximation (see Section 4.4).
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Page 64

Exercise 1.28, Lines 3 and 4: “the entropy functions are additive, so that. . . ” should read,
e.g., “the information h(·) is additive so that. . . ” (see also the previous erratum).

Page 69

Equation (2.2): Although the Bernoulli distribution Bern (x|µ) is a valid, correctly normalized
probability distribution for any value of the parameter 0 6 µ 6 1 (Page 69, Paragraph 1,
Line 1),19 it becomes degenerate, i.e., x is fixed to a single value so that x = 0 or x = 1 if
µ = 0 or µ = 1, respectively.20 Such degenerate distributions are often difficult to treat with
some generality so that they actually seem to have been excluded (implicitly or explicitly) in
most of the discussions in PRML. For example, we should be unable to take the logarithm
of the Bernoulli likelihood (2.5) to give (2.6) if the distribution can be degenerate (because
the logarithm diverges if µ = 0 or µ = 1). More generally, one cannot identify a degenerate
distribution with any member of the exponential family (see Section 2.4). For instance, the
degenerate Bernoulli cannot be expressed as the exponential of the logarithm as in (2.197)
because its natural parameter (2.198) is again not well-defined for µ = 0 or µ = 1.

Restriction on probability of success In order for the Bernoulli distribution Bern (x|µ) not
to be degenerate, we assume in this report that the parameter µ (called the probability of
success) is restricted on the open set (0, 1), rather than on the closed set [0, 1] as in PRML, so
that we can write

Bern (x|µ) = µx(1− µ)1−x = exp {x lnµ+ (1− x) ln(1− µ)} , µ ∈ (0, 1) (51)

whilewe can still consider thedegenerate case as the limitµ→ 0orµ→ 1. Similar discussions
also apply to other discrete distributions, i.e., the binomialdistribution (2.9) and themultinomial
distribution (2.34), for which we shall, therefore, assume the restrictions µ ∈ (0, 1) and
µk ∈ (0, 1) for all k, respectively. See also our definition (200) of the multinoulli distribution.

Accordingly, the same restrictions µ ∈ (0, 1) and µk ∈ (0, 1) for all k are assumed also on
the domains of the (conjugate) prior distributions, i.e., the beta distribution (2.13) and the
Dirichlet distribution (2.38). Note that these restrictions do not affect correct normalization of
the distributions; and also that, with these restrictions, we can avoid potential difficulty that
the density function can diverge at the boundary of the domain (see Figures 2.2 and 2.5).

Page 69

Equation (2.6): In order to take the logarithm of the likelihood (2.5), we should assume
µ ∈ (0, 1) so that the Bernoulli distribution is not degenerate. See (51).

Page 70

Paragraph −1, Line −1: The lower ellipsis (. . .) should be centered (· · · ).

19Similarly to 0 ln 0 ≡ 0, we have defined 00 ≡ 1 here.
20Note however that, in the context of Bayesian inference in which we regard the parameter µ as a random

variable, the Bernoulli distribution Bern (x|µ) cannot be degenerate because µ ∈ (0, 1) almost surely so that
the edge cases, i.e., µ = 0 and µ = 1, do not matter after all.

12



Page 75

The text following (2.26): We assume in this report that µk ∈ (0, 1) for all k. See (51).

Page 76

Equations (2.34) and (2.35): The multinomial coefficient (2.35) is better written as(
N

m1,m2, . . . ,mK

)
≡ N !
m1!m2! · · ·mK ! (52)

where m1,m2, . . . ,mK are comma separated in the left hand side so that it is not to be
confused with a function of the product ofm1,m2, . . . ,mK . Also, the lower ellipsis (. . .) in
the right hand side of (2.35) should be centered (· · · ) as shown in (52).

Page 76

The text following (2.37): We assume in this report that µk ∈ (0, 1) for all k. See (51).

Page 77

The caption of Figure 2.4: We assume in this report that µk ∈ (0, 1) for all k. See (51).

Page 78

The caption of Figure 2.5: “{αk} = 0.1” should read “αk = 0.1 for all k” and so on.

Page 80

Equation (2.52): We usually take eigenvectors ui to be the columns of U as in (C.37). If we
follow this convention, (2.52) and the following text should read

y = UT(x− µ) (53)

where U is a matrix whose columns are given by ui so that U = (u1, . . . ,uD). From (2.46) it
follows that U is an orthogonal matrix, i.e., it satisfies UTU = I and hence also UUT = I
where I is the identity matrix.

Page 81

Equations (2.53) and (2.54): If we write the change of variables from x to y as (53) instead of
(2.52), the Jacobian matrix J = (Jij) is simply given by U. Equation (2.53) should read

Jij = ∂xi
∂yj

= Uij (54)

where Uij is the (ij)-th element of U. The square of the determinant of the Jacobian
matrix (2.54) can then be evaluated as

|J|2 = |U|2 =
∣∣UT∣∣ |U| = ∣∣UTU

∣∣ = |I| = 1. (55)
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Page 81

The text after (2.54): Since the Jacobian matrix J is only assumed to be orthogonal here, the
determinant of J can be either positive or negative so that we should write |J| = ±1 instead
of |J| = 1.

Page 82

Equation (2.56): We should take the absolute value of the determinant for the same reason
given in the above erratum so that the factor |J| should read |det (J)|. Note however that it
is not recommended to write ||J|| to mean |det (J)| because ||J|| is confusingly similar to the
matrix norm ‖J‖, which usually refers to the largest singular value of J (Golub and Van Loan,
2013). This notational inconsistency is caused by the abuse of the notation | · | for both the
absolute value and the matrix determinant; if we always use det(·) for the determinant,
confusion will not arise and the notation be consistent.

Notation for absolute determinant An alternative solution to the problem of notational
inconsistency mentioned above would be to explicitly define |A| as the absolute value of the
determinant of a square matrix A, i.e.,

|A| ≡ |det (A)| (56)

so that we have |J| = 1 and (2.56) holds as is. Note also that this notation (56) is mostly
consistent in other part of PRML because we have |A| = det (A) for any positive-semidefinite
matrix A � 0 (see Appendix C) and most matrices for which we take determinants are
in fact positive definite.21 Such positive-definite matrices include the covariance Σ or the
precision Λ of the multivariate Gaussian distribution and the scale matrix W of the Wishart
distribution (see Appendix B).

Page 82

Two lines above (2.59): “the term in z in the factor (z + µ)” should read “the term z in the
factor (z + µ)” (Remove the first occurrence of “in”).

Page 90

Paragraph −1, Line 2: The partitioned vector should read (2.65) or x =
(
xT
a ,xT

b

)T.

Page 91

Paragraph 1, Line 1: “linear Gaussian” should read “linear-Gaussian” (with hyphenation)
for consistency with other part of PRML (see, e.g., Section 8.1.4).

21In this report, we assume as customary that the concept of positive/negative (semi)definiteness is restricted
to symmetric matrices. For example, when we say “A is positive definite” or A � 0, we implicitly assume
that A is also symmetric so that AT = A, though we still sometimes say “A is symmetric positive definite” to
avoid confusion.
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Page 93

Equation (2.120): The “vector derivative” operator ∂
∂µ

should read the gradient operator∇µ
if we adopt the notation (301) as we do in this report.

Pages 93 and 94

Equations (2.121) and (2.122): We obtain the maximum likelihood solutions µML and ΣML

for the Gaussian by setting the derivatives of the log likelihood function ln p (X|µ,Σ) given
by (2.118) with respect to µ and Σ equal to zero, which, however, only implies that µML and
ΣML are stationary points. We should also show that µML and ΣML indeed maximize the
likelihood as discussed in the following.

Maximum likelihood for Gaussian Let us firstmaximize the likelihood functionwith respect
to the mean µ. This can be easily done by noting that the log likelihood (2.118) is quadratic
in µ so that

ln p (X|µ,Σ) = −N2 (µ− µML)T Σ−1 (µ− µML) + const (57)

where µML is given by (2.121) and the terms independent of µ have been absorbed into
“const.” Since the covariance Σ is positive definite and so is its inverse Σ−1, we see that
the log likelihood (57) is concave with respect to µ and that µML indeed maximizes the
likelihood.

Next, we consider maximization with respect to the covariance Σ. The maximum
likelihood solution ΣML given by (2.122) can be obtained by solving

∇Σ ln p (X|µML,Σ) = O (58)

where ∇A is the gradient operator with respect to a matrix A defined by (326) and O is
a zero matrix. Making use of the eigenvalue expansion (2.48) of Σ, we can write the log
likelihood (2.118) in terms of the eigenvalues {λi} so that

ln p (X|µ,Σ) = −N2

D∑
i=1

{
ln λi + Si

λi

}
+ const (59)

where

Si = 1
N

N∑
n=1

y2
ni, yni = uT

i (xn − µ) . (60)

Although the log likelihood (59) is not a concave function of Σ (one can easily see this by
considering the univariate case), one can observe that ln p (X|µ,Σ)→ −∞ if Σ approaches
the boundary of the space of symmetric positive-definite matrices, i.e., if λi → 0 or λi →∞
for any i. Therefore, if (58) has a unique solution ΣML � 0, then µML and ΣML jointly
maximize the likelihood.

Note that a similar observation holds when we maximize the log likelihood in terms of
the precision Λ ≡ Σ−1, in which case the corresponding log likelihood for Λ is given by

ln p (X|µML,Λ) = N

2 ln |Λ| − N

2 Tr (ΣMLΛ) + const. (61)
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Setting the derivative of (61) with respect to Λ equal to zero, we indeed obtain ΛML = Σ−1
ML.

One can also see that (61) is actually a strictly concave function of Λ due to the strict concavity
of ln |Λ| for Λ � 0 (Magnus and Neudecker, 2007) together with the linearity of Tr (ΣMLΛ).
See Anderson and Olkin (1985) for further discussions.

Page 100

Equations (2.147) and (2.148): In addition to the mean E[λ] and the variance var[λ], given by
(2.147) and (2.148), respectively, we are also interested in the log expectation E [lnλ], given by
(B.30), of the gamma distribution (2.146), which is necessary to evaluate the entropy H [λ],
given by (B.31). Note that the log expectation of the Dirichlet distribution (2.38) is derived in
Exercise 2.11 by differentiating its probability with respect to the parameters (the mean and
the covariance are concerned in Exercise 2.10). Applying this technique of differentiation, we
can calculate the log expectation of the gamma distribution. Here, I would like to state the
technique in more general terms (see Section 2.4 for even more general exposition in terms
of the exponential family), after which we show (B.30). We also find an alternative form of
the log expectation E [lnλ] in terms of the logarithm of the mean lnE[λ] and an interesting
function related to the digamma function, namely, the log minus digamma function.

Score function For a correctly normalized probability distribution p (x|θ) over some
random variables x parameterized by parameters θ and differentiable with respect to θ,
let us consider how p (x|θ) changes under perturbations in θ. Specifically, the first-order
relative difference in the direction η is given by

1
p (x|θ) lim

ε→0

{
p (x|θ + εη)− p (x|θ)

ε

}
= ηTg(θ,x) (62)

where we have assumed that p (x|θ) remains correctly normalized under sufficiently small
perturbations in θ; and defined the score function, denoted by g(θ,x), as the derivative of the
log probability with respect to θ so that

g(θ,x) ≡ ∇θ ln p (x|θ) = ∇θ p (x|θ)
p (x|θ) . (63)

Note that the score function (63) is called the Fisher score (6.32) in PRML. In fact, the
first-order relative difference (62) is zero on average in whatever the direction η because the
expectation of the score function (63) vanishes so that

Ex [g(θ,x)|θ] = 0 (64)

where Ex [·|θ] denotes the conditional expectation (1.37) so that the above expectation is
taken with respect to p (x|θ).

We can show the general identity (64) by differentiating the both sides of the integral
identity ∫

p (x|θ) dx = 1 (65)
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with respect to θ, giving

∇θ
∫
p (x|θ) dx = 0 (66)∫

∇θ p (x|θ) dx = 0 (67)∫
p (x|θ)∇θ ln p (x|θ) dx = 0 (68)

where we have assumed that we can interchange the order of the derivative and the integral;
and used the log derivative identity

∇f = f ∇ ln f. (69)

Although we have assumed here that the variables x are continuous, the same discussion
holds if some or all of x are discrete by replacing the integrations with summations as
required.

At this moment, I would like to point out a subtlety in the identity (64). Recall that, when
we introduce the score function (63), we have assumed that sufficiently small perturbations
in θ do not affect the correct normalization of p (x|θ). This assumption is required to
show (64) because otherwise the right hand side of (66) would not vanish. Let us take the
multinoulli distribution Mult (x|µ) defined by (200) as an example. Since we cannot change
a single parameter µk (the normalized probability of observing xk = 1) independently of
the others µj where j 6= k due to the sum-to-one constraint

∑
k µk = 1, it is not valid to

substitute ∇µk
ln Mult (x|µ) into (64). Instead, we should consider the derivatives with

respect to independent parameters. The unnormalized probabilities µ̃k related to µk through
(202) are among such parameters; the corresponding score function is given by

∇µ̃k
ln Mult (x|µ) = xk

µ̃k
− 1∑

j µ̃j
. (70)

Substituting (70) into (64), we indeed obtain a valid result that E[xk] = µk.

Log expectation of gamma distribution Now, let us return to the gammadistribution (2.146).
The derivative of the log probability with respect to a is given by

∂

∂a
ln Gam (λ|a, b) = lnλ− ψ(a) + ln b (71)

where ψ(·) is the digamma function given by (107). Substituting (71) into (64), we obtain

E [lnλ] = ψ(a)− ln b (72)

showing (B.30). Similarly, one can reproduce the result (2.147) for the mean E [λ] by
substituting the derivative of the log probability with respect to b into (64).

Log minus digamma function It follows from Jensen’s inequality (21) that the log expec-
tation E [lnλ] is less than the logarithm of the mean lnE [λ] because ln ξ is strictly concave
where ξ > 0 so that

E [lnλ] < lnE [λ] = ln a
b

(73)

17



−2 0 2
µ

0

1

2

λ

−2
0

2
µ

0 1 2
λ

0
0.2
0.4
0.6

Figure 3 Contour and surface plots of the Gaussian-gamma (normal-gamma) distribution (2.154) where
µ0 = 0, β = 2, a = 5, and b = 6. Contours are plotted at densities from 0.1 (the outermost contour, shown
in blue) to 0.5 (innermost, red) with an equal step of 0.1.

where we have used (2.147). The difference between lnE [λ] and E [lnλ] can be evaluated
analytically in this case by noting (72) or (B.30) so that

E [lnλ] = lnE [λ]− ϕ(a) (74)

where ϕ(a) > 0 is what we call the log minus digamma function defined by

ϕ(a) ≡ ln a− ψ(a), a ∈ (0,∞). (75)

The log minus digamma function (75) naturally arises also in deriving the maximum
likelihood solution for the gamma distribution as we shall see shortly.

Page 102

Figure 2.14: Since no contour labels are given, this contour plot alone does not convey very
useful information regarding the shape of the distribution. For a better grasp, we can use the
contour and the surface plots in combination as shown in Figure 3.

Page 102

Equation (2.155): Although an interpretation for the parameters of the gamma distribu-
tion (2.146) has been given, no such an interpretation for the parameters of the Wishart
distribution (2.155) is given here nor in Exercise 2.45. Generally speaking, when we construct
a probabilistic model with priors, we must choose some reasonable (initial) values for
their parameters, known as hyperparameters; this calls for an intuitive interpretation for the
parameters of such priors. We can give an interpretation for the parameters of the Wishart
distribution as follows.

Interpreting parameters of Wishart Let us consider a simple Bayesian inference problem in
which, given a set of N observations X = {x1, . . . ,xN} for a zero-mean Gaussian random
variable, we infer the covariance matrix Σ or, equivalently, the precision matrix Λ ≡ Σ−1.

18



The likelihood p (X|Λ) in terms of the precision Λ is given by

p (X|Λ) =
N∏
n=1

p (xn|Λ) =
N∏
n=1

N
(
xn
∣∣0,Λ−1) . (76)

If we choose the prior p (Λ) over Λ to be a Wishart distribution so that

p (Λ) =W (Λ|W0, ν0) (77)

our analysis can be simplified because it is the conjugate prior. In fact, the posterior p (Λ|X)
is given by

p (Λ|X) ∝ p (X|Λ) p (Λ) (78)

∝ |Λ|N/2 exp
{
−1

2

N∑
n=1

xT
nΛxn

}
|Λ|(ν0−D−1)/2 exp

{
−1

2 Tr
(
W−1

0 Λ
)}

(79)

= |Λ|(νN−D−1)/2 exp
{
−1

2 Tr
(
W−1

N Λ
)}

(80)

where

νN = ν0 +N (81)

W−1
N = W−1

0 +
N∑
n=1

xnxT
n . (82)

Reinstating the normalization constant, we indeed see that the posterior becomes again a
Wishart distribution of the form

p (Λ|X) =W (Λ|WN , νN) . (83)

This result suggests us how we can interpret the parameters of the Wishart distribu-
tion (2.155), namely the scale matrix W and the number of degrees of freedom ν. Since
observingN data points increases the number of degrees of freedom ν byN , we can interpret
ν0 in the prior (77) as the number of “effective” prior observations. The N observations also
contributeNΣML to the inverse of the scale matrix W where ΣML is the maximum likelihood
estimate for the covariance of the observations given by

ΣML = 1
N

N∑
n=1

xnxT
n (84)

suggesting an interpretation of W in terms of the “covariance” parameter

Σ ≡ (νW)−1 . (85)

More specifically, we can interpretΣ0 = (ν0W0)−1 as the covariance of the ν0 “effective” prior
observations. Note that this interpretation is in accordance with another observation that
the expectation of Λ with respect to the prior (77) is indeed given by E [Λ] = ν0W0 = Σ−1

0
where we have used (B.80).
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Page 102

Equation (2.157): Again, no interpretation is given for the parameters of the Gaussian-Wishart
distribution (2.157) nor for those of the Gaussian-gamma distribution (2.154). Since the
Gaussian-gamma can be obtained as a special case of the Gaussian-Wishart where the
dimension is one so thatD = 1, we shall make an interpretation only for the parameters of
the Gaussian-Wishart here.

Interpreting parameters of Gaussian-Wishart Let us consider a problem of inferring the
mean µ and the precision Λ given the Gaussian likelihood

p (X|µ,Λ) =
N∏
n=1

N
(
xn
∣∣µ,Λ−1) (86)

and the Gaussian-Wishart prior

p (µ,Λ) = N
(
µ
∣∣µ0, (β0Λ)−1)W (Λ|W0, ν0) . (87)

At this moment, we introduce notations for the maximum likelihood estimates for the mean
and the covariance given the N observations X = {x1, . . . ,xN}, i.e.,

µML = 1
N

N∑
n=1

xn, ΣML = 1
N

N∑
n=1

(xn − µML)(xn − µML)T (88)

respectively. After some algebra,22 we can evaluate the posterior as

p (µ,Λ|X) ∝ p (X|µ,Λ) p (µ,Λ) (93)

∝ |Λ|N/2 exp
{
−1

2

N∑
n=1

(xn − µ)T Λ (xn − µ)
}

× |Λ|(ν0−D)/2 exp
{
−1

2 Tr
({

W−1
0 + β0 (µ− µ0) (µ− µ0)T

}
Λ
)}

(94)

= |Λ|(νN−D)/2 exp
{
−1

2 Tr
({

W−1
N + βN (µ− µN) (µ− µN)T

}
Λ
)}

(95)

22The form (99) of W−1
N is a little tricky to obtain so that I would like to show a more detailed derivation

here. Collecting and evaluating the coefficients of Λ inside Tr(·) in the posterior (94), we have

W−1
0 +

N∑
n=1

(xn − µ) (xn − µ)T + β0 (µ− µ0) (µ− µ0)T (89)

= W−1
0 +NΣML +N (µ− µML) (µ− µML)T + β0 (µ− µ0) (µ− µ0)T (90)

= W−1
0 +NΣML + βN (µ− µN ) (µ− µN )T − βNµNµ

T
N +NµMLµ

T
ML + β0µ0µ

T
0 (91)

= W−1
0 +NΣML + βN (µ− µN ) (µ− µN )T + β0N

β0 +N
(µML − µ0) (µML − µ0)T

. (92)
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Figure 4 Plot of Student’s t-distribution density functions St (x|µ, λ, ν) (left) and corresponding log density
functions ln St (x|µ, λ, ν) (right) for various values of ν where we have fixed µ = 0 and λ = 1.

where

βN = β0 +N (96)
βNµN = β0µ0 +NµML (97)

νN = ν0 +N (98)

W−1
N = W−1

0 +N

[
ΣML + β0

βN
(µML − µ0) (µML − µ0)T

]
. (99)

Thus, we find that the posterior is again a Gaussian-Wishart of the form

p (µ,Λ|X) = N
(
µ
∣∣µN , (βNΛ)−1)W (Λ|WN , νN) . (100)

Note that a similar result is obtained in Section 10.2.1 for a Bayesian mixture of Gaussians
model in which we assume a Gaussian-Wishart prior for each Gaussian component.

From the above result, we see that the parameters β0 and µ0 for the mean µ can be
interpreted somewhat independently of those ν0 and W0 for the precision Λ. We can
interpret β0 as the number of “effective” prior observations for µ and µ0 as the mean of the
β0 prior observations. The interpretation of ν0 and W0 is similar to the one we have made in
the previous erratum except that we have in (99) a term due to the uncertainty in µ, that
is, a term involving the outer product of the difference between the maximum likelihood
mean µML and the prior mean µ0, scaled by β0/βN .

Page 102

Paragraph −1, Line −2: “Gamma” should read “gamma” (without capitalization).

Page 103

Figure 2.15: The tails of Student’s t-distributions are too high; one can easily see that, if
compared to the corresponding Gaussian distribution labeled ν →∞, the t-distributions are
not correctly normalized. Figure 4 gives the correct plot.

Page 103

Paragraph −1, Line −3: As pointed out in the text, the maximum likelihood solution
for Student’s t-distribution can be most easily found by the expectation maximization (EM)
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algorithm, which we study for discrete and continuous latent variables in Chapters 9 and 12,
respectively; it is not until Exercise 12.24 that we apply the EM algorithm to the problem of
maximum likelihood for the (multivariate) Student’s t-distribution (2.162). Althoughwe have
to defer the derivation of the above mentioned EM algorithm for some time, it is useful to
have considered a related problem of maximum likelihood for the gamma distribution (2.146)
here in advance, because, since the t-distribution is obtained by marginalizing over a gamma
distributed precision as we have seen in (2.158), we need to estimate the gamma distribution
as a subproblem of the EM for the t-distribution.

Maximum likelihood for gamma distribution Given a data set x = {x1, . . . , xN}, we con-
sider a likelihood function of the form

p (x|a, b) =
N∏
n=1

Gam (xn|a, b) (101)

where the gamma distribution Gam (λ|a, b) is given by (2.146). The log likelihood is given by

ln p (x|a, b) = N {− ln Γ(a) + a ln b+ (a− 1) ln x̂− bx} (102)

where x and x̂ denote the arithmetic mean and the geometric mean, respectively, so that

x = 1
N

N∑
n=1

xn, ln x̂ = 1
N

N∑
n=1

ln xn. (103)

We see from (102) that x and ln x̂ are the sufficient statistics of the gamma distribution.
Here, we assume that xn > 0 for all n (which holds with probability one if xn has been
drawn from a gamma distribution) so that we have x > 0 and x̂ > 0.

Let us first assume that a > 0 is known. It is easy to see that the log likelihood (102) is a
strictly concave function of b > 0. We can maximize the likelihood by setting the derivative
of (102) with respect to b equal to zero, which gives b = a/x. Back substituting this into
(102), we have

ln p (x|a, b)|b=a/x = N {− ln Γ(a) + a ln a− a ln x+ (a− 1) ln x̂− a} . (104)

Next we maximize (104) with respect to a > 0. This can be done by setting the derivative
of (104) with respect to a equal to zero, which gives a nonlinear equation of the form

ϕ(a) = ln x− ln x̂ (105)

where ϕ(·) is the log minus digamma function given by (75). One can see that (104) is again a
strictly concave function of a > 0 because ϕ(a) is a strictly monotonically decreasing function
so that ϕ′(a) < 0.

It follows from Jensen’s inequality (21) that ln x > ln x̂ (which impliesx > x̂ because of the
monotonicity of the logarithm). Here, we further assume that the strict inequality ln x > ln x̂
holds so that the right hand side of (105) lies among (0,∞). Since the log minus digamma
function ϕ : (0,∞)→ (0,∞) is bĳective and thus has the inverse function ϕ−1 : (0,∞)→
(0,∞), we can solve (105) uniquely for a > 0. Substituting this into b = a/x, we finally
obtain the maximum likelihood solution for the gamma distribution

aML = ϕ−1 (ln x− ln x̂) , bML = aML

x
. (106)
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Page 104

Paragraph 1, Line 4: In practical applications, the importance of robustness to outliers cannot
be overemphasized. Here, I would like to point out that, particularly in the context of robust
regression, there exist historically a number of heuristic approaches to robustness such as
M-estimators (Press et al., 1992; Szeliski, 2010), in which the standard least squares method is
modified so as to use a more “robust” cost function. In this respect, the robust regression in
terms of Student’s t-distribution can be regarded as an M-estimator where the cost function
is derived from its negative log likelihood.

AnM-estimator can be solved iteratively by approximating the cost functions successively
in terms of quadratic bounds. Called iteratively reweighted least squares or IRLS, this algorithm
closely resembles the EM algorithm. In fact, one can identify the IRLS and the EM for the
robust regression in terms of Student’s t-distribution. Note also that the successive quadratic
approximation in IRLS can be regarded as a local variational method discussed in Chapter 10.

Although we are free to choose from a broad class of cost functions in M-estimators, such
a heuristic choice makes our Bayesian analysis difficult. For instance, M-estimators need a
separate evaluation data set for selecting hyperparameters. On the other hand, probabilistic
models such as the robust regression model in terms of Student’s t-distribution allow us
to perform model selection in a consistent way without the need for an evaluation data set,
while avoiding overfitting.

Page 104

The text after (2.160): The GaussianN (x|µ,Λ) should readN (x|µ,Λ−1).

Page 110

Paragraph −1, Line 3: Insert a space before the sentence starting “This is known. . . ” (the
third printing only).

Page 112

Paragraph −1, Line 3: Insert a comma (,) after the ellipsis (. . . ).

Page 114

Equation (2.210): We assume in this report thatµk ∈ (0, 1) for all k and thus
∑K−1

k=1 µk ∈ (0, 1).
See (51).

Page 115

The line before (2.215): η = (η1, . . . , ηM−1)T should be η = (η1, . . . , ηM−1, 0)T (the third
printing only).23

23Note that this erratum is taken from the official errata (Svensén and Bishop, 2011) for the first and the
second printings, which is however missing in the errata for the third printing.
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Page 116

Equation (2.224): The right hand side should be a zero vector 0 (instead of a scalar zero 0).
Furthermore, I would like to point out that the gradient operator∇ found on the left hand
side, which is first used here in PRML, has not been properly defined. Actually, although
Appendix C introduces the “vector derivative” operator ∂

∂x , which is (perhaps confusingly)
used interchangeably with the gradient operator∇x throughout PRML, the gradient itself is
not defined anywhere in PRML. Moreover, the “vector derivative” operator is, unfortunately,
not well-defined in Appendix C; we shall come back to this issue later in this report. See
(301) for the proper definition of the gradient∇we adopt in this report.

Page 119

The line before (2.239): “for choices” should be “for all choices.”

Page 126

The caption of Figure 2.28: The red, green, and blue points correspond to the “homogeneous,”
“annular,” and “laminar” (or “stratified”) classes, respectively.

Page 127

Paragraph 2, Lines 1 and 2: Remove the two commas before and after the phrase “and the
kernel density estimator.”

Page 128

Exercise 2.4, Line 3: “the mean of n” should be “the mean ofm.”

Page 129

Exercise 2.9, Line 1: Remove the period (.) after www .

Page 129

Equation (2.275): Insert a comma (,) between µj and µl so that the left hand side of (2.275)
reads cov [µj, µl].

Page 130

Equation (2.277): In order to be consistent with the mathematical notation in PRML, the
differential operator d should be an upright d. Specifically, the digamma function is given by

ψ(a) ≡ d
da ln Γ(a) = Γ′(a)

Γ(a) . (107)

Note that the digamma function (107) is also known as the psi function (Abramowitz and
Stegun, 1964; Olver et al., 2018).
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Page 132

Exercise 2.28, Line −2: “given (2.99)” should be “given by (2.99).”

Page 133

Exercise 2.35, Line 1: Remove the comma in “the results (2.59), and (2.62).”

Page 138

Equation (3.1): The lower ellipsis (. . .) should be centered (· · · ).

Page 141

Equation (3.13): The use of the gradient operator∇ is not consistent here. As in, e.g., (2.224),
the gradient of a scalar function is usually defined as a column vector of derivatives so that
(3.13) should read24

∇w ln p (t|w, β) = β
N∑
n=1

{
tn −wTφ (xn)

}
φ (xn) (108)

where we have written the variable w with respect to which we take the gradient in the
subscript of∇ explicitly. See (301) for the definition of the gradient operator∇ adopted in
this report.

Page 142

Equation (3.14): The left hand side should be a zero vector 0 instead of a scalar zero 0 so that
(3.14) should read

0 =
N∑
n=1

tnφ (xn)−
(

N∑
n=1

φ (xn)φ (xn)T

)
w (109)

where we have used the gradient of the form (108) instead of (3.13).

Page 142

Equation (3.16): Note that the design matrix Φ can be expressed more concisely as

Φ = (φ1,φ2, . . . ,φN)T (110)

where we have written φn ≡ φ(xn). Using this representation (110), one can more easily see
that the likelihood function (3.10) can also be written as a multivariate Gaussian so that

p (t|X,w, β) = N
(
t
∣∣Φw, β−1I

)
(111)

where the target variables {tn} have been grouped into a column vector

t = (t1, t2, . . . , tN)T . (112)

24Note that we use a different typeface (from a D-dimensional target variable t) for the N -dimensional
vector t = (t1, . . . , tN )T consisting of one-dimensional target variables {tn} where n = 1, . . . , N . See also
“Mathematical Notation” for PRML on Pages xi–xii.
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Similarly, the sum-of-squares error function (3.12) can be written in the form

ED(w) = 1
2 ‖t−Φw‖2 (113)

where ‖ε‖ =
√
εTε is the norm of a vector ε. Taking the gradient of (113) with respect to w,

we have
∇wED(w) = −ΦT (t−Φw) (114)

where we have used the identity (312) together with the chain rule (304) and the identity (309).
Setting the gradient (114) equal to zero, we directly obtain the normal equations (3.15).

Page 146

Equation (3.31): The left hand side should be y (x,W) instead of y (x,w).

Page 147

The text after (3.35): Insert a comma (,) after the ellipsis (. . . ).

Page 147

Paragraph −2: The argument that “the phenomenon of [overfitting25] does not arise when
we marginalize over parameters in a Bayesian setting” is simply an overstatement. Bayesian
methods, like any other machine learning methods, can overfit because the true model from
which the data set has been generated is unknown in general so that one could possibly
assume an inappropriate (too expressive) model that would give a terribly wrong prediction
very confidently; this is true even when we take a “fully” Bayesian approach (i.e., not
maximum likelihood, MAP, or whatever) as discussed shortly. We also discuss in what
follows the difference between the two criteria for assessing model complexity, namely, the
generalization error (see Section 3.2) and the marginal likelihood (or the model evidence; see
Section 3.4), which is not well recognized in PRML.

ABayesianmodel that exhibits overfitting Let us take a Bayesian linear regressionmodel of
Section 3.3 as an example and suppose that the precision β of the target t in the likelihood (3.8)
is very large whereas the precision α of the parameters w in the prior (3.52) is very small
(i.e., the conditional distribution of t given w is narrow whereas the prior over w is broad),
leading to insufficient regularization (see Section 3.1.4). Then, the posterior p(w|t) given the
data set t will be sharply peaked around the maximum likelihood estimate wML and the
predictive p(t|t) be also sharply peaked (well approximated by the likelihood conditioned
on wML). Stated differently, the assumed model reduces to the least squares method, which
is known to suffer from overfitting (see Section 1.1).

Of course, we can extend the model by incorporating hyperpriors over β and α, thus
introducing more Bayesian averaging. However, if the extended model is not sensible (e.g.,
the hyperpriors are sharply peaked around wrong values), we shall again end up with a
wrong posterior and a wrong predictive.

25In this report, we use the term “overfitting” without hyphenation (i.e., instead of “over-fitting” as in PRML).
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The point here is that, since we do not know the true model (if any), we cannot know
whether the assumed model is sensible in advance (i.e., without any knowledge about data
to be generated). We can however assess, given a data set, whether a model is better than
another by, say, Bayesian model comparison (see Section 3.4), though a caveat is that we still
need some (implicit) assumptions for the framework of Bayesian model comparison to work;
see the discussion around (3.73).

Generalization error vs. marginal likelihood Moreover, one should also be aware of a
subtlety that (i) the generalization error, which can be estimated by cross-validation (Section 3.2),
and (ii) the marginal likelihood, which is used in the Bayesian model comparison framework
(Section 3.4), are closely related but different criteria for assessingmodel complexity, although,
in practice, a higher marginal likelihood often tends to imply a lower generalization error
and vice versa. For more (advanced) discussions, see Watanabe (2010, 2013).

Page 156

Equation (3.57): The new input vector x is omitted in (3.57) as in, e.g., (3.74). However, this
is inconsistent with (3.58). By making the conditioning on x explicit, (3.57) should read

p (t|x, t, α, β) =
∫
p (t|x,w, β) p (w|t, α, β) dw (115)

where we have omitted the previous input vectors X corresponding to the targets t as we
have done in (3.11).

Page 166

Paragraph 2, Line 1: “Gamma” should read “gamma” (without capitalization).

Pages 168–169, and 177

Equations (3.88), (3.93), and (3.117) as well as the text before (3.93): The derivative operators
should be partial differentials. For example, (3.117) should read

∂

∂α
ln |A| = Tr

(
A−1 ∂

∂α
A
)
. (116)

Page 170

Figure 3.15: The eigenvectors u1 and u2 are unit vectors so that their orientations should be
shown as in Figure 2.7 on Page 81. Or, the scaled vectors u1 and u2 should be labeled as
λ
−1/2
1 u1 and λ

−1/2
2 u2, respectively.

Page 174

Exercise 3.4, Line −4: The Kronecker delta δij should read Iij for consistency with other part of
PRML where Iij is the (i, j)-th element of the identity matrix I (see “Mathematical Notation”
on Pages xi–xii).
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Page 179

Paragraph 1, Line −4: The decision surfaces are defined by linear equations of the input
vector x and thus are (D − 1)-dimensional hyperplanes within the D-dimensional input
space.

Page 180

The lines before and after (4.3): f( · ) should be f(·) (the spaces around the dot should be
removed to conform with notation elsewhere in PRML).

Page 186

Paragraph 2, Line 2: Insert a space before the sentence starting “This shows a. . . ” (the third
printing only).

Page 190

Equation (4.33): The right hand side should be a zero vector 0 instead of a scalar zero 0.

Page 205

Equation (4.88): The differential operator d should be an upright d.

Page 207

Equation (4.92): The gradient and the Hessian in the right hand side, which are in general
functions of the parameter w, must be evaluated at the previous estimate wold for the
parameter. Thus, (4.92) should read

wnew = wold −
[
H
(
wold)]−1∇E

(
wold) (117)

where H (w) ≡ ∇∇E (w) is the Hessian matrix whose elements comprise the second
derivatives of E (w) with respect to the components of w.

Page 210

Equation (4.110) and the preceding text: The left hand side of (4.110) is obtained by taking
the gradient of ∇wj

E given in (4.109) with respect to wk and corresponds to the (k, j)-th
block of the Hessian, not the (j, k)-th. Thus, (4.110) should read

∇wk
∇wj

E (w1, . . . ,wK) =
N∑
n=1

ynj (Ikj − ynk)φnφT
n . (118)

To be clear, we have used the following notation. If we group all the parameters w1, . . . ,wK

into a column vector

w =

w1
...

wK

 (119)
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the gradient and the Hessian of the error function E (w) with respect to w are given by

∇wE =

∇w1E
...

∇wK
E

 , ∇w∇wE =

∇w1∇w1E · · · ∇w1∇wK
E

... . . . ...
∇wK

∇w1E · · · ∇wK
∇wK

E

 (120)

respectively.

Pages 212–214

Equations (4.119), (4.122), (4.126), and (4.128): The differential operator d should be an
upright d.

Page 213

Paragraph 1, Line 1: “must related” should be “must be related.”

Page 218

Equation (4.144): The covariance should be the one SN evaluated at wMAP. To make this
point clear, we can write the approximate posterior in the form

q(w) = N (w|wMAP,SMAP) (121)

where
SMAP = SN |w=wMAP

(122)

and SN is given by (4.143).

Page 219

Equation (4.150): mN should read wMAP. Note that the notation mN is the one used for the
mean (3.50) of the posterior (3.49) for the Bayesian linear regression whereas wMAP, which
however cannot be represented analytically, is the mean of the approximate posterior (121)
for the Bayesian logistic regression. Furthermore, if we adopt the notation (122) for the
covariance of the approximate posterior (121), then we have the variance σ2

a in the form

σ2
a = φT SMAPφ. (123)

Page 237

Equation (5.26): The right hand side should be a zero vector 0 instead of a scalar zero 0.

Page 237

Paragraph 4, Line 2: ∇E(w) = 0 should read∇E(w) = 0 (the right hand side should be a
zero vector 0).

Page 238

Paragraph 2, Line 3: ∇E(w) = 0 should read∇E(w) = 0 (the right hand side should be a
zero vector 0).
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Page 238

Equation (5.32): Since we refer to the right hand side of (5.32) later, let us write it as, say,
Ẽ(w) so that (5.32) reads

E(w) ' Ẽ(w) ≡ E(w?) + 1
2 (w−w?)T H (w−w?) . (124)

Perhaps we should have used different notation because we use Ẽ differently in Section 5.5.5,
though this will not cause any great confusion even if we use Ẽ(w) here.

Page 238

Equation (5.34): The Kronecker delta δij should read Iij for consistency with other part of
PRML.

Page 238

Equation (5.36): The left hand side should read Ẽ(w) where Ẽ(w) is given by (124).

Page 239

Figure 5.6: The eigenvectors u1 and u2 are unit vectors so that their orientations should be
shown as in Figure 2.7 on Page 81. Or, the scaled vectors u1 and u2 should be labeled as
λ
−1/2
1 u1 and λ

−1/2
2 u2, respectively.

Page 246

The line following (5.65): “δs” should read “δ’s” for consistency with the line above (5.65).

Page 248

Equations (5.75) and (5.76): The Kronecker delta δkl should read Ikl for consistency with
other part of PRML. See also (4.106).

Page 251

Paragraph 2, Line 1: The outer product approximation to the Hessian of the form (5.84) is
usually referred to as the Gauss-Newton approximation (Press et al., 1992), which not only
eliminates the computation of second derivatives but also guarantees that the Hessian thus
approximated is positive (semi)definite, whereas the Levenberg-Marquardtmethod (Press et al.,
1992) is a method that improves the numerical stability of (Gauss-)Newton type iterations by
correcting the Hessian matrix so as to be more diagonal dominant. Let us now compare the
two types of approximation to the Hessian, i.e., Gauss-Newton and Levenberg-Marquardt,
more specifically in the following. We first observe that the Gauss-Newton approximation to
the Hessian given in the right hand side of (5.84) can be written succinctly in terms of matrix
product as

HGN = JTJ (125)
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where J = (∇a1, . . . ,∇aN)T is the Jacobian of the activations a1, . . . , aN with respect to the
parameters (weights and biases). The Levenberg-Marquardt approximation to the above
Hessian typically takes the form

HLM = JTJ + λI (126)

or
HLM = JTJ + λ diag

(
JTJ

)
(127)

where we have introduced an adjustable damping factor λ > 0 (which will be adjusted
through the iterations) and defined that, for a square matrix A = (Aij), diag(A) is a diagonal
matrix obtained by setting the off-diagonal elements equal to zero so that diag(A) =
diag(Aii).

Page 259

Paragraph 1, Line −1: The parameters rescaling should be λ1 → a2λ1 and λ2 → c−2λ2.

Page 266

The unlabeled equation following the line starting “Substituting into the mean error function
(5.130). . . ”:26 Add the term O (ξ3) to the right hand side (the third printing only).

Page 266

Equation (5.132): The third occurrence of the superscript T for matrix transpose should be
an upright T.

Page 267

Equation (5.134): The superscript T should be an upright T.

Page 275

The text after (5.154): The identity matrix I should multiply σ2
k(xn).

Page 277

Equation (5.160): The factor L should multiply σ2
k(x) because we have

s2(x) = E
[
Tr
{

(t− E [t|x]) (t− E [t|x])T
}∣∣∣x] (128)

=
K∑
k=1

πk(x) Tr
{
σ2
k(x)I + (µk(x)− E [t|x]) (µk(x)− E [t|x])T

}
(129)

=
K∑
k=1

πk(x)
{
Lσ2

k(x) + ‖µk(x)− E [t|x]‖2} (130)

where L is the dimensionality of t.

26Such an unlabeled equation makes me upset because it is simply difficult to make reference. Called Fisher’s
rule (Mermin, 1989), it is a good practice to number all displayed equations (including those not referenced therein).

31



Page 279

Equation (5.165): We should add conditioning on α and β so that the left hand side reads
ln p (w|D, α, β).

Page 279

Equation (5.167): The conditioning on D (or on any other variable) does not make sense for
an approximate distribution q(·) unless properly defined. Hence, the conditioning for q(·)
should be removed or the variables on which the posterior (5.164) is conditioned should
instead be specified as parameters for q(·) so that the left hand side of (5.167) reads q(w) or
q(w;D, α, β), respectively.

Page 279

Equation (5.168): The equality (=) should be approximate (≈). Also, we should again add
conditioning on α and β. Thus, (5.168) should read

p (t|x,D, α, β) ≈
∫
p (t|x,w, β) q(w) dw (131)

where we have written the approximate posterior as q(w).

Page 279

Equations (5.169) and (5.171): The superscripts T (in a bold typeface) should read T (in a
roman typeface).

Page 279

Equation (5.172): The equality (=) should be approximate (≈).

Page 289

Equation (5.208): The Kronecker delta δjk should read Ijk for consistency with other part of
PRML; see, e.g., (5.95).

Page 295

Paragraph 1, Line 1: The vector x should be a column vector so that x = (x1, x2)T.

Page 300

Paragraph −1, Line 4: Remove the comma (,) before the clause “which retain the. . . ”

Pages 307 and 314

Equations (6.62) and (6.75): The Kronecker delta δnm should read Inm for consistency with
other part of PRML.
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Page 318

Equations (6.93) and (6.94) as well as the text before (6.93): The text and the equations
should read: We can evaluate the derivative of a?n with respect to θj by differentiating the
relation (6.84) with respect to θj to give

∂a?N
∂θj

= ∂CN

∂θj
(tN − σN)−CNWN

∂a?N
∂θj

(132)

where the derivatives are Jacobians defined by (C.16) for a vector and analogously by (325)
for a matrix. Rearranging (132) then gives

∂a?N
∂θj

= (I + CNWN)−1 ∂CN

∂θj
(tN − σN) . (133)

Page 319

Paragraph −1, Line −1: Insert a comma (,) before the clause “which breaks translation. . . ”

Page 326

Paragraph −1, Line −3: Insert a comma (,) before the clause “who consider a. . . ”

Page 333

Equation (7.29): ∂L
∂w = 0 should read∇wL = 0.

Page 335

Paragraph 1, Line 12: The term “protected conjugate gradients” should read “projected
conjugate gradients.”

Page 341

Equation (7.57): ∂L
∂w = 0 should read∇wL = 0.

Page 349

Paragraph 1, Line 2: Remove the article “a” before “Gaussian processes.”

Page 354

Equation (7.112): The mean w? of the Laplace approximation to the posterior p (w|t,α) can
only be obtained iteratively by, say, IRLS as described in the text so that (7.112) does not
represent an explicit solution and is thus best removed.

As we shall see shortly, it is however useful to note that, at the convergence of IRLS, we
have the following implicit equations for w?

∇w ln p (w?|t,α) = ΦT(t− y?)−Aw? = 0 (134)

where y? is y evaluated at w = w? so that

y? = y|w=w? . (135)
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Page 354

Equation (7.113): Let us note that the precision (the inverse of the covariance Σ) of the
Laplace approximation to the posterior p (w|t,α) is given by the Hessian of the negative log
posterior evaluated at w? so that

Σ−1 = −∇w∇w ln p (w?|t,α) . (136)

The covariance Σ should thus be given by

Σ =
(
A + ΦTB?Φ

)−1 (137)

where B? is B evaluated at w? so that

B? = B|w=w? . (138)

Page 355

Equation (7.117): The typeface of the vector y in (7.117) should be that in (7.110), i.e., y.
Moreover, B and y should be those evaluated at w = w? so that t̂ is given by

t̂ = Φw? + (B?)−1 (t− y?) . (139)

It should also be noted here that we define t̂ as (139) in order that we can write the
posterior mean w? in terms of t̂ so that

w? = ΣΦTB?t̂ (140)

because we have

ΣΦTB?t̂ = ΣΦTB?Φw? + ΣΦT (t− y?) (141)
= ΣΦTB?Φw? + ΣAw? (142)
= Σ

(
A + ΦTB?Φ

)
w? (143)

= w? (144)

where we have made use of (139), (134), and (137). We shall make use of (140) when we
analyze the RVM classification problem (see below).

Page 355

Equation (7.118): Although this marginal distribution cannot be obtained directly from the
Laplace approximation (7.114) to the marginal p (t|α) of the RVM classification problem, it
can be shown to be an (approximate) marginal for a “linearized” version of the classification
problem where t̂, given by (139), serves as the target (Tipping and Faul, 2003). Since the
linearized problem can be regarded as an RVM regression problem having data-dependent
precisions, we first review such a regression problem, after which we derive the marginal for
the linearized classification problem.
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RVM regression The likelihood for the RVM regression problem with data-dependent
precisions β = {β1, . . . , βN} is given by

p (t|w,β) =
N∏
n=1

N
(
tn
∣∣wTφn, β

−1
n

)
(145)

= N
(
t
∣∣Φw,B−1) (146)

where we have omitted the conditioning on X = {x1, . . . ,xN} to keep the notation unclut-
tered; and written φn = φ (xn) and

t = (t1, . . . , tN)T (147)

Φ = (φ1, . . . ,φN)T (148)
B = diag (β1, . . . , βN) . (149)

The prior is the same as (7.80) so that

p (w|α) =
M∏
i=1

N
(
wi
∣∣0, α−1

i

)
(150)

= N
(
w
∣∣0,A−1) (151)

where

w = (w1, . . . , wM)T (152)
A = diag (α1, . . . , αM) . (153)

The joint distribution is given by a linear-Gaussian model of the form

p (t,w|α,β) = p (t|w,β) p (w|α) (154)
= N

(
t
∣∣Φw,B−1)N (w∣∣0,A−1) . (155)

Making use of the general results (2.115) and (2.116) for the marginal and the conditional
Gaussians, we can readily evaluate the marginal and the posterior distributions again as
Gaussians. The posterior is given by

p (w|t,α,β) = N (w|w?,Σ) (156)

where

w? = ΣΦTBt (157)

Σ =
(
A + ΦTBΦ

)−1
. (158)

The marginal is given by
p (t|α,β) = N (t|0,C) (159)

where
C = B−1 + ΦA−1ΦT. (160)
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RVM classification Let us now return to the RVM classification problem. We have already
seen that the posterior can be approximated by the Laplace approximation so that

p (w|t,α) ≈ N (w|w?,Σ) (161)

where the mean w? can be obtained by the IRLS algorithm as we have discussed; and the
covariance Σ is given by (137).

Here, we note that w? can be written in the form (140). Comparing (140) with (157)
and (137) with (158), we see that the Laplace approximation locally maps the classification
problem to a regression problem with the data-dependent precision matrix B?, given by
(138), where the target vector t is replaced by the “linearized” target t̂, given by (139).

Assuming that the distribution over t̂ can be approximated by the Laplace approximation
(as we have done in (161) for w); and making use of the linear-Gaussian relation, we can
obtain the corresponding marginal for the linearized problem in the form

p
(̂
t
∣∣α) ≈ N (̂t∣∣0,C) (162)

where
C = (B?)−1 + ΦA−1ΦT. (163)

The right hand side of (162) takes the same form as the marginal (159) of the regression
problem so that “we can apply the same analysis of sparsity and obtain the same fast learning
algorithm” (Page 355, Paragraph −4, Line −3).

Page 355

Equation (7.119): BothA andB should be inverted and, moreover,B should be that evaluated
at w = w? so that (7.119) should read (163).

Page 357

Exercise 7.1, Line −2: Remove the second occurrence of “that.”

Page 361

Equation (8.3): The last lower ellipsis (. . .) should be centered (· · · ).

Page 386

Paragraph −2, Line −2: “involves” should be “involve.”

Page 390

Paragraph −1, Line 5: Insert a space before the sentence starting “Here the joint. . . ” (the third
printing only).

Page 399

Paragraph 3, Line 3: Remove the first occurrence of an indefinite article “a.”
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Page 403

Paragraph 1, Line 2: The conjunction “and” in the phrase “. . . , and is equivalent to. . . ”
should be replaced by a relative pronoun “which.”

Page 404

Equation (8.65): The last lower ellipsis (. . .) should be centered (· · · ).

Page 404

Equation (8.66): The lower ellipses (. . .) between
∑

’s should be centered (· · · ).

Page 411

Paragraph −2, Line −7: Insert “to” after “corresponding.”

Page 411

Equation (8.89): The lower ellipsis (. . .) should be centered (· · · ).

Page 414

The caption of Figure 8.53, Line 6: The term “max-product” should be “max-sum.”

Page 417

Paragraph 2, Line 3: The clause “that can broadly be called variational methods” is restrictive
so that the enclosing commas (,) should be removed.

Page 418

Paragraph 1, Line 5: “give” should be “gives.”

Page 424

Paragraph −2, Line −2: Remove the comma (,) after µk.

Page 425

Equation (9.3): The right hand side should be a zero vector 0 instead of a scalar zero 0.

Page 432

The text after (9.13): I would like to point out for clarity that the prior p(z) given by (9.10) is
a multinomial distribution or, more precisely, a multinoulli distribution (200) so that

p (z) = Mult (z|π) =
K∏
k=1

πzk
k . (164)
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Moreover, we see that the posterior p (z|x) again becomes a multinoulli distribution of the
form

p (z|x) = Mult (z|γ) =
K∏
k=1

γzk
k (165)

where we have written γk ≡ γ(zk). Called the responsibility, γk is given by (9.13), which can
also be found directly by inspecting the functional form of the joint distribution

p (z) p (x|z) =
K∏
k=1

{πkN (x|µk,Σk)}zk (166)

and noting that the multinoulli distribution (200) can be expressed in terms of unnormalized
probabilities as shown in (201) where the normalized probabilities are given by (202). This
observation helps the reader understand that evaluating the responsibilities γk indeed
corresponds to the E step of the EM algorithm.

Page 433

The caption of Figure 9.5, Line −1: Add a period (.) at the end of the last sentence.

Page 434

Equation (9.15): Although the official errata document (Svensén and Bishop, 2011) states
that σj in the right hand side should be raised to a power ofD, the whole right hand side
should be raised toD so that (9.15) should read

N
(
xn
∣∣xn, σ2

j I
)

= 1(
2πσ2

j

)D/2 . (167)

Page 435

Equation (9.16): The left hand side should be a zero vector 0 instead of a scalar zero 0.

Page 440

Paragraph 2, Lines 1 and 2: In order to be consistent with the expression “for each observation
in X,” the phrase “the corresponding value of the latent variable Z” should read, e.g., “the
value of the corresponding latent variable in Z.”

Page 440

Paragraph 3, Line 5: Throughout the discussion, Z denotes a set of latent variables. Hence,
“the latent variable” should be “the latent variables.”

Page 450

Paragraph 1, Line −1: “maxmization” should be “maximization.”
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Page 453

Paragraph 1: The old and new parameters should read θold and θnew (without parentheses),
respectively, as in (9.74) and the text.

Page 453

Paragraph 2, Line 4: “. . . , by marginalizing over the {zn} we have. . . ” should read, e.g.,
“. . . , by marginalizing over the latent variables {zn}, we have. . . ”

Page 465

Equations (10.6) and (10.7): The lower bound of the form (10.6) for variational Bayes will be
later recognized as “a negative Kullback-Leibler divergence between qj(Zj) and p̃(X,Zj)”
(Page 465, Paragraph −1, Line −2). However, there is no point in taking the Kullback-Leibler
divergence between two probability distributions over different sets of random variables;
such a quantity is undefined. Moreover, the discussion here seems to be somewhat redundant.
Without introducing an intermediate quantity like p̃(X,Zj), we can rewrite (10.6) and (10.7)
directly in terms of q?j (Zj). Specifically, writing down the terms dependent on one of the
factors qj (Zj), we obtain the lower bound L(q) in the form

L(q) =
∫
qj (Zj)EZ\Zj

[ln p (X,Z)] dZj −
∫
qj (Zj) ln qj (Zj) dZj + const (168)

= −KL
(
qj
∥∥q?j )+ const (169)

where we have assumed that the expectation EZ\Zj
[·] is taken with respect to Z but Zj so that

EZ\Zj
[ln p (X,Z)] =

∫
· · ·
∫

ln p (X,Z)
∏
i 6=j

qi (Zi) dZi (170)

and defined a new distribution q?j (Zj) over Zj by the relation

ln q?j (Zj) = EZ\Zj
[ln p (X,Z)] + const. (171)

It directly follows from (169) that, since the lower boundL(q) is the negative Kullback-Leibler
divergence between qj(Zj) and q?j (Zj) up to some additive constant, the maximum of L(q)
occurs when qj(Zj) = q?j (Zj).

Page 465

The text before (10.8): The latent variable zi should read Zi.

Page 465

Paragraph −1, Line −1: If we adopt the representation (169), the factor p̃(X,Zj) should read
q?j (Zj).

Page 466

Paragraph 1, Line 1: Again, p̃(X,Zj) should read q?j (Zj). The sentence “Thus we obtain. . . ”
should read, e.g., “Thus we see that we have already obtained a general expression for the
optimal solution in (171).”
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Page 466

Paragraph 3, Line −2: “bound” should be “the bound” (with the definite article). Also,
the (lower) bound L(q) is concave (not convex) with respect to each of the factors qi(Zi).
The concavity of the bound L(q) follows from the convexity (44) of the Kullback-Leibler
divergence. To see this, recall that L(q) can be written in the form (169).

Page 467

The text before (10.12) and after (10.15): As Svensén and Bishop (2011) correct the left hand
side of (10.12), we should write q?1(z1) instead of q?(z1) and so on also in the text. Or, we
should clarify that we simply write q(zi) to denote the variational distribution over the latent
variables zi in the same manner as the notation for the probability p(·) is “overloaded” by its
argument(s).

Page 468

The text after (10.16): The constant term in (10.16) is the negative entropy of p(Z).

Page 470

The text after (10.19): “zero forcing” should be “zero-forcing” (with hyphenation).

Page 470

The text after (10.23): “Gaussian-Gamma” should read “Gaussian-gamma” (without capital-
ization for “gamma”).

Page 478

Equation (10.63): The additive constant +1 on the right hand side should be omitted so that
(10.63) should read

νk = ν0 +Nk. (172)

A quick check for the correctness of the re-estimation equations would be to consider the
limit of N → 0, in which the effective number of observations Nk also goes to zero and
the re-estimation equations should reduce to identities. Equation (10.63) does not reduces
to νk = ν0, failing the test. Note that the solution for Exercise 10.13 given by Svensén and
Bishop (2009) correctly derives the result (172).

Page 489

Equations (10.107) through (10.112): Some of the notations for the expectation are inconsistent
with the one (1.36) employed in PRML; they should read EZ[·] where Z is replaced with the
corresponding latent variables. For example, Eα [ln q(w)]w in the last line of (10.107) and
E [ln p (t|w)]w in the left hand side of (10.108) should read Ew [ln q(w)] and Ew [ln p (t|w)],
respectively, where we have assumed that the expectation EZ[·] is taken with respect to the
variational distribution q (Z).

Note however that we can safely omit the subscripts Z of the expectations EZ[·] here, as
we have done in, e.g., (10.70), because the variables over which we take the expectations

40



are clear; we take the expectations over all the latent variables when we calculate the lower
bound. We only need to make the subscripts explicit when we find an optimal factor q?(Zi),
in which case we take expectation selectively, that is, over all the latent variables but Zi; see,
e.g., (10.92) and (10.96).

Page 490

Paragraph −1, Line 2: Insert a comma (,) after the ellipsis (. . . ).

Page 496

Equation (10.140): The differential operator d should be an upright d. Moreover, the
derivative of x with respect to x2 should be written with parentheses as dx

d(x2) , instead of dx
dx2 ,

to avoid ambiguity.

Page 499

Paragraph 1, Line −2: The sentence reads “Once [the right hand side of (10.152)] is normalized
to give a variational posterior distribution q(w), however, it no longer represents a bound.”
The statement does not make sense because the right hand side of (10.152) is a lower bound
in terms of the variational parameters ξ and thus not directly dependent on the variational
distribution q(w). Moreover, as we shall see shortly, we obtain the optimal solution for q(w)
by making use of the general result (175) for local variational Bayes, but not by normalizing
the right hand side of (10.152). Therefore, this sentence is irrelevant and can be safely
removed.

Pages 500 and 501

Equations (10.156) and (10.160): It is not very clear why the variational posterior is obtained
in the form (10.156) and the variational parameters can be optimized by maximizing (10.160).
This EM-like algorithm is not the same as the EM algorithm we have seen in Chapter 9; it can
be derived by maximizing the lower bound (10.3) as follows. Note that the discussion here is
similar to, but more general than, that of Section 10.6.3.

In a more general setting, we consider a local variational approximation to the joint
distribution of the form

p (X,Z) > p̃ (X,Z; ξ) (173)

where ξ denotes the set of variational parameters, assuming that we can bound the likeli-
hood p (X|Z) > p̃ (X|Z; ξ) or the prior p (Z) > p̃ (Z; ξ), or both. Then, we can again bound
the lower bound (10.3) as

L(q) > L̃(q, ξ) ≡ EZ [ln p̃ (X,Z; ξ)]− EZ [ln q (Z)] (174)

where the expectation EZ[·] is taken with respect to the variational distribution q(Z). With
much the same discussion as the derivation of the optimal solution (171) for the standard
variational Bayesian method where we assume some appropriate factorization (10.5) for
q(Z), the optimal solution for the factor qj(Zj) that maximizes the lower bound L̃(q, ξ) can
be obtained by the relation

ln q?j (Zj) = EZ\Zj
[ln p̃ (X,Z; ξ)] + const (175)
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which leads to the variational approximation to the posterior given by (10.156).
The optimization of the variational parameters ξ can be done by maximizing the first

term of the lower bound L̃(q, ξ), i.e.,

Q(ξ) = EZ [ln p̃ (X,Z; ξ)] (176)

which leads to theQ function given by (10.160).

Page 501

The text after (10.162): We have that the variational parameter λ(ξ) is a monotonic function
of ξ for ξ > 0, but not that its derivative λ′(ξ) is.

Page 503

The text after (10.168): A period (.) should be appended at the end of the sentence that
follows (10.168).

Page 504

Paragraph 1, Line 1: In order to obtain the optimized variational distribution (10.174), we
should use the optimal solution (175) for local variational Bayes. Note that the result (175) is
different from the result (171), or (10.9), for standard variational Bayes in that (175) is given
in terms of the lower bound p̃ (X,Z; ξ) to the joint distribution p (X,Z).

Page 504

Equation (10.177): The factor abN
N in the right hand side should be baN

N (it is probably safe to
omit the right hand side at all because it is nothing but a gamma distribution with which the
reader is fairly familiar).

Pages 511 and 512

Equations (10.212) and (10.213): It is helpful to note here that, if we employ the factors f̃n(θ)
of the form (10.213) where n = 1, . . . , N together with f̃0(θ) = f0(θ) = p(θ) where p(θ) is
given by (10.210), then we indeed obtain the approximate posterior q(θ) in the form (10.212).
To see this, let us evaluate the product of all the factors f̃n(θ) where n = 0, 1, . . . , N , giving

N∏
n=0

f̃n(θ) = f0(θ)
N∏
n=1

f̃n(θ) (177)

= N (θ|0, bI)
N∏
n=1

snN (θ|mn, vnI) (178)

= 1
(2πb)D/2

[
N∏
n=1

sn
(2πvn)D/2

]
exp

{
− 1

2v ‖θ −m‖2
}

exp
(
B

2

)
(179)
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where we have used the fact that an EP update leaves the factor f̃0(θ) unchanged so that
f̃0(θ) = f0(θ) = p(θ) holds (see Exercise 10.37); and defined v, m, and B by

1
v

= 1
b

+
N∑
n=1

1
vn

(180)

m
v

=
N∑
n=1

mn

vn
(181)

B = mTm
v
−

N∑
n=1

mT
nmn

vn
. (182)

From (179), we see that the approximate posterior (10.203) is given by (10.212) where v and
m are given by (180) and (181); and also that the approximate model evidence (10.208) is
given by

p(D) ≈
(v
b

)D/2
exp

(
B

2

)[ N∏
n=1

sn
(2πvn)D/2

]
(183)

where B is given by (182).

Page 512

Paragraph 2, Lines 1 and 3: fn(θ) and f0(θ) should read f̃n(θ) and f̃0(θ), respectively.

Page 512

Equation (10.222): The factor (2πvn)D/2 in the denominator of the right hand side of (10.222)
should be removed because it has been already included in the normalization constant of
the Gaussian in the approximate factors (10.213).27

Page 513

Equation (10.223): The right hand side should read that of (183) where v and m are replaced
by vnew and mnew, respectively.28

Page 513

Equation (10.224): v should read vnew for consistency with (10.223).

Page 515

Equations (10.228) and (10.229): Although Svensén and Bishop (2011) correct (10.228) so that
q\b(x) is a normalized distribution, we do not need the normalization of q\b(x) here and,
even with this normalization, we cannot ensure that p̂(x) given by (10.229) is normalized.

27Note that, in PRML, we use the approximate factors (10.213) slightly different from those used by Minka
(2001).

28One might notice that the approximate evidence derived in Minka (2001) looks more like the original
(10.223); this is however due to the different definition for the factors (10.213) and the fact that the product
begins from n = 0 (not n = 1) in Minka (2001).
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Similarly to (10.195), we can proceed with the unnormalized q\b(x) given by the original
(10.228) and, rather than correcting (10.228), we should correct (10.229) so that

p̂(x) ∝ q\b(x)fb(x2, x3) = . . . (184)

implying that p̂(x) is a normalized distribution.

Page 515

The text after (10.229): The new distribution qnew(z) should read qnew(x).

Page 516

Equation (10.240): The subscript k of the product
∏
k

. . . should read k 6= j because we have

already removed the term f̃j(θj).

Page 526

Equation (11.6): The transformation f : (0, 1)→ (−∞,∞) between the random variables z
and y, which is, of course, bĳective as is assumed in (9), is also assumed to be monotonically
increasing in (11.6) so that p (y ∈ (−∞, y0)) = p (z ∈ (0, z0)) where y0 = f(z0).

Page 528

Paragraph −2, Lines 1, 2, and 4: z should be z for consistency with (11.13).

Page 539

The caption of Figure 11.9: Insert “the” before “Metropolis algorithm.”

Page 541

Equation (11.43): The lower ellipses (. . .) should be centered (· · · ).

Page 542

Paragraph 1, Line −6: “steps sizes” should be “step sizes.”

Page 542

Paragraph 1, Line −1: “Metropolis Hastings” should read “Metropolis-Hastings” (with
hyphenation) for consistency.

Pages 554 and 555

Equation (11.72), Line −2 and the text after (11.72): The expectation in the last line but one of
(11.72) is taken with respect to the probability pG(z). This is probably better expressed in
words, rather than the unclear notation like EG(z)[·]. Specifically, the expectation should read

Ez [exp (−E(z) +G(z))] (185)
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where we have written the argument z for E(z) and G(z) for clarity; and the text following
(11.72) should read “where Ez[·] is taken with respect to pG(z) and {z(l)} are samples drawn
from the distribution defined by pG(z).”

Page 555

Paragraph 3, Line 2: The term “importance-sampling distribution” (with hyphenation) is
inconsistent with “importance sampling distribution” (without hyphenation) found in other
part of PRML (e.g., Paragraph 2 on the same page).

Page 556

Exercise 11.7, Line 1: The interval should be [−π/2, π/2] instead of [0, 1].

Page 557

Exercise 11.14, Line 2: The variance should be σ2
i instead of σi.

Page 563

Equation (12.7): The Kronecker delta δij should read Iij for consistency with other part of
PRML.

Page 564

The text after (12.12): The derivative we consider here is that with respect to bj (not that with
respect to bi).

Page 564

Paragraph −1, Line 2: ui = 0 should read ui = 0 (the right hand side should be a zero
vector 0).

Page 575

Paragraph −2, Line 5: The zero vector should be a row vector instead of a column vector so
that we have vTU = 0T. Or, the both sides are transposed to give UTv = 0.

Page 578

Equation (12.53): As stated in the text preceding (12.53), we should substitute µ = x into
(12.53).

Page 578

The text before (12.56): For the maximization with respect to W, we use (C.25) and (C.27)
instead of (C.24).
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Page 579

Paragraph 1, Line 5: The eigendecomposition requires O(D3) computations (in the plural
form).

Page 587

The text before (12.75): The phrase “the eigenvector equations tells us. . . ” should read, e.g.,
“the eigenvector equation (12.74) tells us. . . ” if we see (12.74) as one equation as a whole.

Page 588

Paragraph −2, Lines 1 and 2: The term “principal component projections” is inconsistent
with “principal components projection” (with “components” in the plural form) found in
Paragraph 2, Line −1. Probably, we should write “principal components projection(s).”

Page 599

Exercise 12.1, Line −1: The quantity λM+1 is an eigenvalue (not an eigenvector).

Page 599

The first line before (12.93): Either remove the comma or add another one after “notation.”

Page 602

Exercise 12.25, Line 2: The latent space distribution should read p(z) = N (z|0, I).

Page 608

Paragraph −1, Line −1: Insert a comma (,) after the ellipsis (. . . ).

Page 610

Paragraph 1, Line −4: The text “our predictions for xn+1 depends on. . . ” should read: “our
predictions for xn+1 depend on. . . ” (Remove the trailing ‘s’ from the verb).

Page 616

Equation (13.15): The summation should run over zn in the rightmost expression so that it
reads ∑

zn

γ(zn)znk (186)

(the third printing only).29

Page 617

Paragraph 1, Line 1: Remove the space preceding the comma.

29Note that this erratum is taken from the official errata (Svensén and Bishop, 2011) for the first and the
second printings, which is however missing in the errata for the third printing.
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Page 619

Paragraph 3, Line −1: “. . . because these fixed throughout” should read “. . . because these
are fixed throughout.”

Page 620

Paragraph −1, Line 4 and the following (unlabeled) equation: The last sentence before the
equation and the equation should each be terminated with a period (.).

Page 621

Paragraph 1, Line −2: “scaled” should read “scales.”

Pages 621 and 622

Figures 13.12 and 13.13: It should be clarified that, similarly to the notations α(znk) and
β(znk) defined in Section 13.2.2, the notation p (xn|znk) denotes the value of p (xn|zn) when
znk = 1 so that

p (xn|znk) ≡ p (xn|znk = 1) . (187)

Page 622

Paragraph −1, Line 1: “M step equations” should read “M-step equations” (with hyphenation
for the adjectival term “M-step”) for consistency with the following line as well as other part
of PRML.

Page 622

Equation (13.40): The summations should read
∑N

n=1.

Page 623

Paragraph 1, Line −2: znk should read zn−1,k.

Page 627

Paragraph 1, Line −2: “send” should read “sent.”

Page 627

Paragraph 3, Line 2: “forward backward algorithm” should read “forward-backward
algorithm” for consistency (see Section 13.2.2).

Page 630

The caption of Figure 13.16: p (xn|k) should read p (xn|znk) where we have used (187).
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Page 631

Equation (13.73): The equation should read
R∑
r=1

ln
{
p (Xr|θmr) p(mr)∑M
l=1 p (Xr|θl) p(l)

}
. (188)

Page 635

Paragraph 1, Line −3: “algorithms” should read “algorithm.”

Page 637

Equations (13.81), (13.82), and (13.83): The distribution (13.81) over w should read

p(w) = N (w|0,Γ) (189)

and so on.

Page 638

Paragraph 1, Line 2: “conditional on” should read “conditioned on.”

Page 641

Equation (13.104) and the preceding text: The form of the Gaussian is unclear. Since a
multivariate Gaussian is usually defined over a column vector, we should construct a column
vector from the concerned random variables to clearly define the mean and the covariance.
Specifically, (13.104) and the preceding text should read: . . . we see that ξ(zn−1, zn) is a
Gaussian of the form

ξ(zn−1, zn) = N
((

zn−1
zn

)∣∣∣∣∣
(
µ̂n−1
µ̂n

)
,

(
V̂n−1 V̂n−1,n

V̂T
n−1,n V̂n

))
(190)

where themean µ̂n and the covariance V̂n of zn are given by (13.100) and (13.101), respectively;
and the covariance V̂n−1,n between zn−1 and zn is given by

V̂n−1,n = cov [zn−1, zn] = Jn−1V̂n. (191)

Pages 642 and 643

Equation (13.109) and the following equations: If we follow the notation in Chapter 9, the
typeface of the Q function should beQ.

Page 642

Equation (13.109): If we follow the notation for the conditional expectation (1.37), the Q
function (13.109) should read

Q
(
θ,θold) = EZ

[
ln p (X,Z|θ)

∣∣X,θold] (192)

=
∫

dZ p
(
Z
∣∣X,θold) ln p (X,Z|θ) (193)

which corresponds to (9.30).
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Page 643

Equation (13.111): Vnew
0 should read Pnew

0 . Svensén and Bishop (2011) have failed to mention
(13.111).

Page 643

Equation (13.114): The size of the opening curly brace “{” should match that of the closing
curly brace “}.”

Page 647

The caption of Figure 13.23, Line −1: p(xn+1|z(l)
n+1) should read p(xn+1|z(l)

n+1).

Page 649

Exercise 13.14, Line 1: (8.67) should be (8.64).

Page 650

Equations (13.127) and (13.128): The equal signs should be aligned.

Page 651

Exercises 13.25 through 13.28: A zero matrix is denoted by O (not by 0 nor 0) so that we
should write A = O and so on.

Page 651

Exercises 13.29: “backwards recursion” should read “backward recursion” for consistency.

Page 657

Paragraph −2, Line 1: Insert a comma before “such as” or remove the comma that follows.

Page 658

The equation at the bottom of Figure 14.1: The subscript of the summation in the right hand
side should readm = 1.

Page 659

Paragraph 2, Line 3: “learners” should read “learner.”

Page 659

Paragraph 2, Line 4: “stumps” should read “stump.”

Page 666

Paragraph −1, Line 2: “mixtures” should read “mixture.”
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Page 668

Equation (14.37): The arguments of the probability are notationally inconsistent with those of
(14.34), (14.35), and (14.36). Specifically, the conditioning onφn should read that on tn and the
probability p(k| . . . ) be the value of p(zn| . . . ) when znk = 1, which we write p(znk = 1| . . . ).
Moreover, strictly speaking, the old parameters πk,wk, β should read πold

k ,wold
k , βold ∈ θold.

In order to solve these problems, we should rewrite (14.37) as, for example,

γnk = E
[
znk
∣∣tn,θold] (194)

where we have written the conditioning in the expectation explicitly and the expectation is
given by

E [znk|tn,θ] = p (znk = 1|tn,θ) =
πkN

(
tn
∣∣wT

kφn, β
−1)∑

j πj N
(
tn
∣∣wT

j φn, β
−1
) . (195)

Page 668

The unlabeled equation between (14.37) and (14.38): If we write the implicit conditioning in
the expectation explicitly (similarly to the above equations), the unlabeled equation should
read

Q
(
θ,θold) = EZ

[
ln p(t,Z|θ)

∣∣t,θold] (196)

=
N∑
n=1

K∑
k=1

γnk
{

ln πk + lnN
(
tn
∣∣wT

kφn, β
−1)} . (197)

Page 669

Equations (14.40) and (14.41): The left hand sides should both read a zero vector 0 instead of
a scalar zero 0.

Page 669

Equation (14.41): Φ is undefined. The text following (14.41) should read for example: where
Rk = diag(γnk) is a diagonal matrix of size N × N and Φ = (φ1, . . . ,φN)T is an N ×M
matrix. Here, N is the size of the data set and M is the dimensionality of the feature
vectors φn.

Page 669

Equation (14.43): “+const” should be added to the right hand side.

Page 671

The text after (14.46): The text should read: “where we have omitted the dependence on
{φn} and defined ynk = . . . ” Or, φ should have been omitted from the left hand side of
(14.45) in the first place.

Page 671

Equation (14.48): The notation should be corrected similarly to (194) and (195).
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Page 671

Equation (14.49): The notation should be corrected similarly to (196).

Page 672

Equation (14.52): The negation should be removed so that the Hessian is given by Hk ≡
∇k∇kQwhere

∇k∇kQ = −
N∑
n=1

γnkynk(1− ynk)φnφT
n . (198)

Page 674

Exercise 14.1, Line 1: “of” should be inserted after “set.”

Page 685

Paragraph −1, Line 3: We assume in this report that µ ∈ (0, 1). See (51).

Page 686

Paragraph 1, Line 1: We assume in this report that µ ∈ (0, 1). See (51).

Page 686

Equation (B.9): The mode (B.9) of the beta distribution exists “if a > 1 and b > 1.”

Page 686

Paragraph 1, Line −3: Since we assume in this report that µ ∈ (0, 1), we have no singularity.
See (51).

Page 686

Paragraph −1, Line 3: We assume in this report that µ ∈ (0, 1). See (51).

Page 686

Paragraph −1, Line −3: The lower ellipsis (. . .) should be centered (· · · ) and the comma (,)
after the ellipsis be removed so that the product reads: m× (m− 1)× · · · × 2× 1.

Page 687

Equation (B.15) and the preceding text: We assume in this report that µk ∈ (0, 1) for all k.
See (51).
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Page 687

Equation (B.19): Insert a comma (,) between µj and µk; and also add the condition j 6= k so
that (B.19) reads

cov [µj, µk] = − αjαk
α̂2 (α̂ + 1) , j 6= k. (199)

Page 687

Equation (B.20): The mode (B.20) of the Dirichlet exists “if αk > 1 for all k.”

Page 687

Equation (B.25): The differential operator d should be an upright d.

Page 687

Paragraph −1, Line −1: Since we assume in this report that µk ∈ (0, 1) for all k, we have no
singularity as with the beta distribution. See (51).

Page 688

Paragraph 1, Line 1: “Gamma” should read “gamma” (without capitalization).

Page 689

Paragraph 1, Line 1: “positive-definite” should read “positive definite” (without hyphen-
ation).

Page 689

Equation (B.49): x in the right hand side should read xa.

Page 690

Equation (B.52): µo in the right hand side should read µ0 (the subscript should be a zero 0).

Page 690

Equation (B.54): The discrete distribution of the form (B.54), or (2.26), is known as the
categorical or the multinoulli distribution (Murphy, 2012). It is also sometimes called, less
precisely, the “multinomial” or the “discrete” distribution. Of these terms, I would prefer
the term multinoulli because it naturally suggests that it is a generalization of the Bernoulli
distribution (B.1) to multiple categories K > 2 and also a special case of the multinomial
distribution (B.59) where we have only a single observation N = 1. Since we often make
use of this discrete distribution, we shall introduce some notation for the right hand side of
(B.54). See Figure 5 for the relationship between the discrete distributions found in PRML.
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Beta (B.6)
Beta (µ|a, b)

+3

%%

��

Dirichlet (B.16)
Dir (µ|α)

((

��

Bernoulli (B.1)
Bern (x|µ)

��

+3 Multinoulli (200)
Mult (x|µ)

��
Binomial (B.10)
Bin (m|N,µ)

+3 Multinomial (B.59)
Mult (m1, . . . ,mK |µ, N)

Figure 5 The relationship between discrete distributions and their conjugate priors. Here, “A ⇒ B”
(respectively, “A→ B”) denotes “A generalizes to B with multiple categories (observations) concerned”; and
“A 99K B” denotes “A is the conjugate prior for B.” Note also that, as this diagram suggests, there are some
inconsistencies in parameterization; it is probably better for consistency to write the binomial as Bin (m|µ,N)
instead of Bin (m|N,µ) and the multinomial as Mult (m|µ, N) instead of Mult (m1, . . . ,mK |µ, N)
where m = (m1, . . . ,mK)T, for example.

Multinoulli distribution Themultinoullidistribution is a distribution over theK-dimensional
binary variablex = (x1, . . . , xK)T where xk ∈ {0, 1} such that

∑
k xk = 1, i.e., we employ the

one-of-K coding scheme for x. Here, we “overload” the notation (B.59) for the multinomial
and write the multinoulli as

Mult (x|µ) ≡
K∏
k=1

µxk
k = exp

{
K∑
k=1

xk lnµk

}
(200)

where the parameter µ = (µ1, . . . , µK)T consists of (normalized) probabilities µk ∈ (0, 1)
such that

∑
k µk = 1.

When we identify a multinoulli distribution from its functional form, e.g., in the posterior
distribution (165) for the Gaussian mixture model (166) of Section 9.2, one will find it
helpful to know that the multinoulli distribution (200) can also be expressed in terms of
unnormalized probabilities µ̃k > 0, i.e.,

Mult (x|µ) ∝
K∏
k=1

µ̃xk
k = exp

{
K∑
k=1

xk ln µ̃k

}
(201)

where the normalized probabilities µk can be found by

µk = p(xk = 1) = µ̃k∑
j µ̃j

. (202)

Page 690

Equation (B.57): Insert a comma (,) between xj and xk so that the left hand side of (B.57)
reads cov [xj, xk].

Page 691

Paragraph 1, Line 2: We assume in this report that µk ∈ (0, 1) for all k. See (51).
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Page 691

Paragraph 2, Line −3: We assume in this report that µk ∈ (0, 1) for all k. See (51).

Page 691

Equations (B.59) and (B.63): The multinomial coefficient (B.63) should read (52).

Page 691

Equation (B.62): Insert a comma (,) betweenmj andmk so that the left hand side of (B.62)
reads cov [mj,mk].

Page 691

The icon for Student’s t-distribution: As we have seen in the erratum for Figure 2.15, the tails
of the t-distributions are too high. Figure 4 gives the correct plot.

Page 692

Equation (B.68): This form of multivariate Student’s t-distribution is derived in Section 2.3.7
by marginalizing over the gamma distributed (scalar) variable η in (2.161), but not by
marginalizing over theD ×D precision matrix Λ that is governed by the Wishart distribu-
tionW (Λ|W, ν) where W � 0 and ν > D − 1, which results in a marginal distribution of
the form

p (x|µ,W, ν) =
∫
N
(
x
∣∣µ,Λ−1)W (Λ|W, ν) dΛ. (203)

The above marginal (203) is indeed equivalent to (B.68) with some reparameterization.
However, this result is not so obvious that I would like to show it here. Note that such
marginalization is also used to derive a mixture of Student’s t-distributions given by (10.81)
in Exercise 10.19.

Multivariate Student’s t-distribution as a marginal over Wishart The key idea to evaluating
the right hand side of (203) is that the integrand can be identified as an unnormalizedWishart
distribution and the marginalization can be done in a symbolic manner. More specifically,
we have

p (x|µ,W, ν) =
∫

dΛ |Λ|1/2

(2π)D/2
exp

{
−1

2 (x− µ)T Λ (x− µ)
}

×B (W, ν) |Λ|(ν−D−1)/2 exp
{
−1

2 Tr
(
W−1Λ

)}
(204)

=
2(ν+1)D/2 ΓD

(
ν+1

2

) ∣∣∣W−1 + (x− µ) (x− µ)T
∣∣∣−(ν+1)/2

(2π)D/2 2νD/2 ΓD
(
ν
2

)
|W|ν/2

(205)

where we have used the fact that the Wishart distribution (B.78) is correctly normalized
(which will be shown later); and introduced the multivariate gamma function ΓD(·) given
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by (259), by which we can simplify the normalization constant B (W, ν) in the form (260).
Finally, we obtain

p (x|µ,W, ν) =
Γ
(
ν+1

2

)
Γ
(
ν+1−D

2

) |W|1/2
πD/2

[
1 + (x− µ)T W (x− µ)

]−(ν+1)/2
(206)

where we have used (259) and (C.15). Thus, we see that the marginal distribution of the
form (203) is equivalent to the multivariate Student’s t-distribution of the form (B.68) or
(2.162); they are related by

p (x|µ,W, ν) = St (x|µ, (ν + 1−D)W, ν + 1−D) . (207)

If the scale matrix is isotropic, which is common in practice, so that W = W̃ I where
W̃ > 0, then the resulting multivariate Student’s t-distribution (207) is again isotropic. The
samemarginal distribution can also be obtained bymarginalizing with respect to a univariate
Wishart (gamma) prior so that∫ ∞

0
N
(
x
∣∣∣µ, λ̃−1I

)
W
(
λ̃
∣∣∣W̃ , ν̃

)
dλ̃ = St

(
x
∣∣∣µ, ν̃W̃ I, ν̃

)
(208)

where ν̃ = ν + 1−D > 0. Note that the “covariance” parameter (85) of the corresponding
multivariate Wishart prior W (Λ|W, ν) for which we obtain the same marginal (208) is

however not equal to σ̃2Iwhere σ̃2 =
(
ν̃W̃

)−1
is the “covariance” parameter of the univariate

Wishart priorW
(
λ̃
∣∣∣W̃ , ν̃

)
, but is given by

Σ = (νW)−1 = ν̃

ν̃ − 1 +D
σ̃2I. (209)

So far, we have observed that a marginal distribution of the form (203) where the
marginalization is taken over amatrix-valued randomvariableΛ is equivalent to amarginal of
the form (2.161) or, if the scale matrix is isotropic, of the form (208) where the marginalization
is over a scalar random variable η or λ̃, respectively. Given that those marginals reduce to
an identical multivariate Student’s t-distribution (with some reparameterization), we now
have a natural question: Which form of marginal is better than the other? I would argue that a
marginal with fewer latent variables, i.e., (2.161) or (208), is always better than a marginal
with more latent variables, i.e., (203), because fewer latent variables imply less computational
space and complexity as well as a tighter bound on the (marginal) likelihood and thus faster
convergence when we infer a model involving such marginals with the EM algorithm (see
Chapter 9) or variational methods (Chapter 10). Moreover, the marginal of the form (2.161)
enjoys even greater modeling flexibility in that it allows us to learn the mean µ and the
precision Λ parameters with, e.g., maximum likelihood (see Exercise 12.24) or variational
Bayes by introducing a (conditionally) conjugate prior for µ and Λ (Svensén and Bishop,
2005).

Page 692

Paragraph −1, Line 2: Since Beta (µ|1, 1) ≡ U (µ|0, 1), I would prefer to write the domain of
the uniform distribution U (x|a, b) where a < b as x ∈ (a, b) for consistency. See also (51).
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Page 693

Equations (B.78) through (B.82): Some appropriate citation, e.g., Anderson (2003), is necessary
for the Wishart distribution (B.78) or (2.155), which is first introduced in Section 2.3.6 as the
conjugate prior for the precision matrix Λ of the multivariate GaussianN (x|µ,Λ−1) where
the mean µ is assumed to be known (see also Exercise 2.45), because no proof has been given
for the normalization constant (B.79) or (2.156). Furthermore, the expectations (B.80) and
(B.81) as well as the entropy (B.82), of which we make use in Section 10.2, have not been
shown either.

Note however that most multivariate statistics textbooks, including Anderson (2003),
motivate the Wishart distribution differently from PRML; they typically introduce the
Wishart distribution as the distribution over a symmetric positive-semidefinite matrix (called
the scatter matrix) of the form

S =
ν∑

n=1

xnxT
n (210)

where x1, . . . ,xν are samples that have been drawn independently from a zero-mean
multivariate GaussianN (x|0,Σ). More specifically, it can be shown that the distribution
over the matrix S is given by

p(S) =W (S|Σ, ν) (211)

if ν > D whereD is the dimensionality of S.30
The derivation of the Wishart distribution along this line is indirect for our purpose (we

are mainly interested in its conjugacy). In the following, I would instead like to show the
normalization (B.79) as well as the expectations (B.80) and (B.81) directly just as we have
done for the gamma distribution (2.146). To this end, we first introduce some notation for
subsets of the space of square matrices such that all the eigenvalues are positive, after which
we review an important matrix factorization method called the Cholesky decomposition as
well as the associated Jacobian. We also introduce the multivariate gamma function, which
simplifies the form of the normalization constant (B.79). The normalization of the Wishart
distribution can be shown through a change of variables similar to the one that we apply for
evaluating the multivariate gamma function. The expectations (B.80) and (B.81) are shown
by making use of the general identity (64).

Spaces of squarematrices with positive eigenvalues To facilitate our discussion, we define
two subsets of the space RD×D of real square matrices of dimensionalityD. Let SD+ ⊂ RD×D

be the space of symmetric positive-definite matrices of dimensionalityD; and UD+ ⊂ RD×D

be the space of upper triangularmatrices of dimensionalityD with strictly positive diagonal
elements. Here, an upper triangular matrix U = (Uij) is a square matrix such that Uij ≡ 0
where i > j so that

U =


U11 U12 · · · U1D
0 U22 · · · U2D
... . . . . . . ...
0 · · · 0 UDD

 (212)

30It follows from the definition (210) of S that the mean is given by E [S] = νΣ, showing the identity (B.80)
when ν is an integer such that ν > D.
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whereD is the dimensionality of U. Similarly, a lower triangular matrix L = (Lij) is a square
matrix such that Lij ≡ 0 where i < j or, equivalently, LT is upper triangular.

If U ∈ UD+ , then U = (Uij) is an upper triangular matrix of dimensionality D such
that Uii > 0 for all i. Note also that A ∈ SD+ is equivalent to saying “A is a symmetric
positive-definite matrix of dimensionalityD.” Positive definiteness of A, or A � 0, implies
by definition that

xTAx > 0 (213)

for any x 6= 0.
The plus sign (+) in the subscripts of SD+ and UD+ indicates that any matrix in either of

the sets is such that all the eigenvalues are strictly positive. To see this for A ∈ SD+ , consult
the discussion regarding the eigenvalue decomposition of real symmetric matrices found in
Appendix C of PRML; for U ∈ UD+ , consider its characteristic equation (C.30), from which it
readily follows that the eigenvalues of U = (Uij) are equal to its diagonal elements Uii > 0.

The above observation regarding the eigenvalues of U = (Uij) ∈ UD+ implies that the
(absolute) determinant of U is given by the product of its diagonal elements Uii > 0, i.e.,

|U| =
D∏
i=1

Uii (214)

which can also be shown directly from the definition (C.10) of the determinant.31

Triangular matrix groups It is worth noting here that UD+ forms a group with respect to
matrix multiplication, i.e., (i) for any pair of the elements U,U′ ∈ UD+ , their product is again
in the groupUD+ so thatUU′ ∈ UD+ ; and (ii) for anyU ∈ UD+ , there exists an inverseU−1 ∈ UD+
such that U−1U = UU−1 = I where I ∈ UD+ is the identity matrix.32 Note however that SD+
does not form a group.33

To see the first part (i), we use mathematical induction. It is trivial to show the case where
D = 1. ForD > 1, let us write U,U′ ∈ UD+ as partitioned matrices such that

U =
(

Û β

0T α

)
, U′ =

(
Û′ β′
0T α′

)
(217)

where Û, Û′ ∈ UD−1
+ and α, α′ > 0. Assuming that the product of Û and Û′ is again in the

31The identity (C.10) is also known as the Leibniz formula for determinants.
32The inverse U−1 is unique in general. To see this, suppose that R is another inverse of U. Then, we have

by associativity that R =
(
U−1U

)
R = U−1 (UR) = U−1.

33In fact, it is easy to see that the product P = AB of A,B ∈ SD
+ is not symmetric in general. Furthermore,

we do not either have (213) where A is replaced by P. To see this, consider, e.g.,

A =
(

1 1
1 2

)
∈ S2

+, B =
(

1 −2
−2 5

)
∈ S2

+ (215)

the product of which is given by

P = AB =
(

1 1
1 2

)(
1 −2
−2 5

)
=
(
−1 3
−3 8

)
6∈ S2

+. (216)

If we take, e.g, x = (1, 0)T, then xTPx = −1 < 0.
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group UD−1
+ so that ÛÛ′ ∈ UD−1

+ , we have

UU′ =
(

Û β

0T α

)(
Û′ β′
0T α′

)
=
(

ÛÛ′ η

0T αα′

)
∈ UD+ (218)

where
η = Ûβ′ + βα′. (219)

The second part (ii) can be shown similarly by induction. Again, it is trivial to show the
case whereD = 1; and, forD > 1, we make use of partitioned matrices. Assuming that the
inverse Û−1 of Û ∈ UD−1

+ is again in the group UD−1
+ so that Û−1 ∈ UD−1

+ , we easily find
U−1 in the form

U−1 =
(

Û β

0T α

)−1

=
(

Û−1 ξ

0T α−1

)
∈ UD+ (220)

where
ξ = −Û−1βα−1. (221)

Cholesky decomposition For any symmetric positive-definite matrix A ∈ SD+ , there exists
a unique upper triangular matrix U ∈ UD+ such that

A = UTU (222)

or, if the matrices A = (Aij) and U = (Uij) are written element-wise,
A11 A12 · · · A1D
A21 A22 · · · A2D
...

... . . . ...
AD1 AD2 · · · ADD

 =


U11 0 · · · 0
U12 U22

. . . ...
...

... . . . 0
U1D U2D · · · UDD



U11 U12 · · · U1D
0 U22 · · · U2D
... . . . . . . ...
0 · · · 0 UDD

 . (223)

This matrix factorization is known as the Cholesky decomposition (Anderson, 2003; Press
et al., 1992) or Cholesky factorization (Golub and Van Loan, 2013; Szeliski, 2010). The upper
triangular matrix U is called the Cholesky factor of A.34

Conversely, for any upper triangular matrix U ∈ UD+ , there exists a unique symmetric
positive-definite matrix A ∈ SD+ such that (222) holds. Therefore, the Cholesky decomposi-
tion (222) can be regarded as a bĳective function SD+ → UD+ . It should also be noted here
that, as a necessary condition for a matrix transformation to be bĳective, the number of
independent parameters in A ∈ SD+ indeed agrees with that of U ∈ UD+ . More specifically,
either of A and U hasD(D+ 1)/2 independent parameters because A is a symmetric matrix
and U is an (upper) triangular matrix.

The existence of the Cholesky decomposition (222) can be shown again by induction.
First, assumeD = 1, in which case we have A > 0 so that U =

√
A > 0 satisfies (222). Next,

34The Cholesky decomposition (222) can also be written in the form

A = LLT (224)

where L is a lower triangular matrix with positive diagonals, in which case L is called the Cholesky factor.
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we consider the general case whereD > 1. As we have done in (217), let us write A ∈ SD+
and U ∈ UD+ as partitioned matrices such that

A =
(

Â b
bT a

)
, U =

(
Û β

0T α

)
(225)

where Â ∈ SD−1
+ and Û ∈ UD−1

+ .35 Then, the right hand side of (222) can be written as

UTU =
(

ÛT 0
βT α

)(
Û β

0T α

)
=
(

ÛTÛ ÛTβ

βTÛ ‖β‖2 + α2

)
. (226)

Equating the right hand side of (226) with the partitioned form (225) of A gives

Â = ÛTÛ (227)

b = ÛTβ (228)
a = ‖β‖2 + α2. (229)

We see that (227) is the Cholesky decomposition from Â ∈ SD−1
+ to Û ∈ UD−1

+ . Assuming
that the (D − 1)-dimensional Cholesky decomposition (227) exists, we can find β and α as

β = Û−Tb (230)

α =
√
a− ‖β‖2 > 0. (231)

Note that (230) is well-defined because Û ∈ UD−1
+ is nonsingular; and so is (231) because we

have a− ‖β‖2 > 0, which can be shown by substituting

x =
(

Â−1b
−1

)
(232)

into (213), giving

0 < a− bTÂ−1b (233)
= a− ‖β‖2 (234)

where we have used (227) (with the both sides inverted) and (230).36
Finally, we observe that the above induction effectively constructs a recursive algorithm

to compute U ∈ UD+ from A ∈ SD+ . The uniqueness of the Cholesky decomposition (222) is
implied by the uniqueness of each operation in the algorithm.

Jacobians ofmatrix transformations Bĳectivity of theCholeskydecomposition (222) allows
us to change variables between a symmetric positive-definite matrix A ∈ SD+ and its Cholesky
factor U ∈ UD+ ; this change of variables technique is, as we shall see shortly, useful for

35It directly follows from (213) that Â � 0. In fact, substituting x =
(
x̂T, 0

)T and the partitioned form (225)
of A into (213), we have x̂TÂx̂ > 0 for any x̂ 6= 0, showing Â � 0.

36The inequality (233) can also be shown by noting that the Schur complement (289) of A � 0 with respect to
Â, given by A/Â = a− bTÂ−1b, is again positive definite.
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evaluating integrals over the space SD+ of symmetric positive-definite matrices because the
Cholesky factor U = (Uij) ∈ UD+ has a simpler domain of integration such that

Uii ∈ (0,∞), Uij ∈ (−∞,∞) (i < j) (235)

for diagonal and off-diagonal elements, respectively. In the following, we review some
necessary Jacobians for such matrix transformations.

First, let us find the Jacobian for the Cholesky decomposition (222) between A ∈ SD+
and U ∈ UD+ . To do so, we work with its element-wise representation given by (223). Since
A = (Aij) is symmetric so thatAij ≡ Aji, we only consider the upper triangular elementsAij
of A such that i 6 j. Writing down the upper triangular elements Aij in lexicographic (or
row-major) order, we have

A11 = U2
11 (236)

A12 = U11U12 (237)...
A1D = U11U1D (238)
A22 = U2

12 + U2
22 (239)...

A2D = U12U1D + U22U2D (240)...
Aij = U1iU1j + · · ·+ UiiUij (i 6 j) (241)...
ADD = U2

1D + U2
2D + · · ·+ U2

DD. (242)

Since Aij depends only on Uij and the preceding elements of U in lexicographic order,37 the
Jacobian of A with respect to U is a lower triangular matrix of the form

∂A
∂U ≡

∂ (A11, A12, . . . , A1D, A22, . . . , A2D, . . . , ADD)
∂ (U11, U12, . . . , U1D, U22, . . . , U2D, . . . , UDD) (243)

=



U11 U12 · · · U1D U22 · · · U2D · · · UDD

A11 2U11 0 · · · 0 0 · · · 0 · · · 0
A12 ∗ U11 · · · 0 0 · · · 0 · · · 0
...

...
... . . . ...

... . . . ... . . . ...
A1D ∗ ∗ · · · U11 0 · · · 0 · · · 0
A22 ∗ ∗ · · · ∗ 2U22 · · · 0 · · · 0
...

...
... . . . ...

... . . . ... . . . ...
A2D ∗ ∗ · · · ∗ ∗ · · · U22 · · · 0
...

...
... . . . ...

... . . . ... . . . ...
ADD ∗ ∗ · · · ∗ ∗ · · · ∗ · · · 2UDD



(244)

where the diagonal elements are given by

∂Aii
∂Uii

= 2Uii > 0, ∂Aij
∂Uij

= Uii > 0 (i < j) (245)

37More specifically, Aij depends on U1i, . . . , Uii and U1j , . . . , Uij where i 6 j, all of which are contained in
the rectangular matrix of dimensionality (i, j) aligned at the upper-left corner of U.
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and the elements denoted by ∗ are elements possibly nonzero. Thus, we obtain the (absolute)
determinant of the Jacobian in the form∣∣∣∣∂A

∂U

∣∣∣∣ = 2UD
11 × 2UD−1

22 × · · · × 2UDD = 2D
D∏
i=1

UD+1−i
ii . (246)

Another matrix transformation of interest here is a linear transformation between two
upper triangular matrices U,R ∈ UD+ of the form

U = RG (247)

where G ∈ UD+ is a constant (recall that UD+ forms a group with respect to multiplication). If
these matrices U = (Uij), R = (Rij), and G = (Gij) are written element-wise, then

U11 U12 · · · U1D
0 U22 · · · U2D
... . . . . . . ...
0 · · · 0 UDD

 =


R11 R12 · · · R1D
0 R22 · · · R2D
... . . . . . . ...
0 · · · 0 RDD



G11 G12 · · · G1D
0 G22 · · · G2D
... . . . . . . ...
0 · · · 0 GDD

 (248)

so that

U11 = R11G11 (249)
U12 = R11G12 +R12G22 (250)...
U1D = R11G1D +R12G2D + · · ·+R1DGDD (251)
U22 = R22G22 (252)...
U2D = R22G2D + · · ·+R2DGDD (253)...
Uij = RiiGij + · · ·+RijGjj (i 6 j) (254)...
UDD = RDDGDD. (255)

Since Uij depends only on Rij and the preceding elements of R in lexicographic order, the
Jacobian matrix ∂U/∂R, defined similarly to (243), is again lower triangular. The diagonal
elements of ∂U/∂R are given by

∂Uij
∂Rij

= Gjj > 0 (256)

where i 6 j so that ∣∣∣∣∂U
∂R

∣∣∣∣ = G11 ×G 2
22 × · · · ×GD

DD =
D∏
i=1

G i
ii. (257)

Multivariate gamma function The multivariate gamma function (Anderson, 2003; Olver et al.,
2018) is defined by

ΓD(a) ≡
∫
SD

+

|X|a−(D+1)/2 exp {−Tr (X)} dX (258)
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where a > (D − 1)/2; and the integration is taken over the space SD+ of symmetric positive-
definite matrices of dimensionality D. It is a generalization of the ordinary (univariate)
gamma function Γ(·) defined by (1.141). In fact, when D = 1, the multivariate gamma
function ΓD(·) reduces to the univariate gamma function Γ(·) so that Γ1(a) ≡ Γ(a).

The multivariate gamma function ΓD(·) can also be written in terms of the univariate
gamma function Γ(·) as

ΓD(a) = πD(D−1)/4
D∏
i=1

Γ
(
a− i− 1

2

)
(259)

so that we can simplify the normalization constant (B.79) of the Wishart distribution (B.78)
in the form

B(W, ν)−1 = 2νD/2 |W|ν/2 ΓD
(ν

2

)
(260)

where W ∈ SD+ (so that W � 0) and ν > D − 1. Similarly, if we define the multivariate
digamma function by

ψD(a) ≡ d
da ln ΓD(a) =

D∑
i=1

ψ

(
a− i− 1

2

)
(261)

where ψ(·) is the (univariate) digamma function defined by (107), then the log (absolute)
determinant expectation (B.81) can be written as

E [ln |Λ|] = D ln 2 + ln |W|+ ψD

(ν
2

)
. (262)

Let us now evaluate the integral (258) to show the identity (259). We first note that, since
X = (Xij) ∈ SD+ is a symmetric matrix, we take the integration only over the D(D + 1)/2
upper triangular elementsXij where i 6 j so that the differential dX means

dX ≡
∏

16i6j6D

dXij = dX11 dX12 · · · dX1D dX22 · · · dX2D · · · dXDD. (263)

The differential dU of an upper triangular matrix U = (Uij) ∈ UD+ is defined similarly.
Making a change of variables from X ∈ SD+ to the Cholesky factor U ∈ UD+ such that
X = UTU, we have

ΓD(a) =
∫
UD

+

|X|a−(D+1)/2 exp {−Tr (X)}
∣∣∣∣∂X
∂U

∣∣∣∣ dU (264)

= 2D
[
D∏
i=1

∫ ∞
0

U2a−i
ii exp

(
−U2

ii

)
dUii

][ ∏
16i<j6D

∫ ∞
−∞

exp
(
−U2

ij

)
dUij

]
(265)

= πD(D−1)/4
D∏
i=1

Γ
(
a− i− 1

2

)
(266)

where we have used

|X| =
∣∣UTU

∣∣ = |U|2 =
D∏
i=1

U2
ii (267)

Tr (X) =
D∑
i=1

Xii =
D∑
i=1

(
U2

1i + · · ·+ U2
ii

)
=

∑
16i6j6D

U2
ij (268)
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together with the result (246) for the Jacobian of the Cholesky decomposition and the integral
identities ∫ ∞

0
u2a−i exp

(
−u2) du = 1

2Γ
(
a− i− 1

2

)
if a >

i− 1
2 (269)∫ ∞

−∞
exp

(
−u2) du =

√
π. (270)

Normalization of Wishart Let us next show that the Wishart distribution (B.78) is indeed
correctly normalized. Specifically, we show the following integral identity

B(W, ν)−1 =
∫
SD

+

|Λ|(v−D−1)/2 exp
{
−1

2 Tr
(
W−1Λ

)}
dΛ (271)

where the normalization constantB(W, ν) is given by (260); andwe have written the domain
of integration explicitly so as to make it clear that Λ ∈ SD+ .

To evaluate the right hand side of (271), we successively make two changes of variables
of the forms

Λ = UTU, U = RG (272)

where U,R ∈ UD+ ; and G ∈ UD+ is the Cholesky factor of 2W ∈ SD+ so that

2W = GTG. (273)

The overall Jacobian factor for the two successive changes of variables (272) is given by∣∣∣∣∂Λ
∂U

∣∣∣∣ ∣∣∣∣∂U
∂R

∣∣∣∣ = 2D |G|D+1
D∏
i=1

RD+1−i
ii (274)

where we have used the results (246) and (257).
It is worth noting here that the change of variables (272) from Λ ∈ SD+ to R ∈ UD+

effectively makes the resulting random variables Rij where i 6 j to be independently
distributed: R2

ii is distributed according to a gamma distribution; and Rij where i < j to
a Gaussian. More specifically, if Λ ∈ SD+ follows a Wishart distribution so that p (Λ) =
W (Λ|W, ν), then it can be shown through the change of variables (272) that

p ({τi} , {Rij | i < j}) =
[
D∏
i=1

Gam
(
τi

∣∣∣∣ν + 1− i
2 , 1

)][ ∏
16i<j6D

N
(
Rij

∣∣∣∣0, 1
2

)]
(275)

where we have further made the change variablesRii = √τi for the diagonal elements.38 The
above observation is useful for sampling (see Chapter 11) and also shows that the Wishart
distribution is indeed correctly normalized. In the following, however, we evaluate the
integral (271) directly by identifying the multivariate gamma function in order to show the
normalization of the Wishart.

38A slightly different form of the change of variables (272) where the scale matrix W is decomposed into the
Cholesky factor of itself as W = GTG, instead of (273), is called the Bartlett decomposition (Anderson, 2003), in
which case Rij where i < j is distributed according to the zero-mean, unit-variance GaussianN (·|0, 1); and
R2

ii to the chi-squared distribution (or χ2-distribution) with ν + 1 − i degrees of freedom or, equivalently, a
gamma distribution of the form Gam (·|(ν + 1− i)/2, 1/2).
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Evaluating the right hand side of (271) by making the change of variables (272), we have∫
SD

+

|Λ|(v−D−1)/2 exp
{
−1

2 Tr
(
W−1Λ

)}
dΛ (276)

= |G|ν
∫
UD

+

∣∣RTR
∣∣(ν−D−1)/2 exp

{
−Tr

(
RTR

)} [
2D

D∏
i=1

RD+1−i
ii

]
dR (277)

= 2νD/2 |W|ν/2 ΓD
(ν

2

)
(278)

where we have used (274) and the relation

|G| = 2D/2 |W|1/2 (279)

between the (absolute) determinants of W ∈ SD+ and G ∈ UD+ ; and identified the integral in
the right hand side with an integral form (264) of the multivariate gamma function ΓD(a)
where a = ν/2.

Mean and log determinant expectation of Wishart Finally, we show the mean (B.80) and
the log (absolute) determinant expectation (262) of the Wishart distribution (B.78) by making
use of the general identity (64). To this end, we first evaluate the derivatives of the log
probability

lnW (Λ|W, ν) = lnB(W, ν) + ν +D − 1
2 ln |Λ| − 1

2 Tr
(
W−1Λ

)
(280)

where
lnB(W, ν) = −νD2 ln 2− ν

2 ln |W| − ln ΓD
(ν

2

)
(281)

with respect to the parameters W and ν, giving

∇W lnW (Λ|W, ν) = −ν2W−T + 1
2W−TΛTW−T (282)

∂

∂ν
lnW (Λ|W, ν) = −D2 ln 2− 1

2 ln |W| − 1
2ψD

(ν
2

)
+ 1

2 ln |Λ| (283)

where we have used (339), (344), and (261). Substituting the above derivatives (282) and
(283) into (64), we obtain the expectations (B.80) and (262), respectively.

Note that, sinceW is symmetric, we should have, strictly speaking, imposed the symmetry
constraint on W when we evaluate the gradient (282). However, since (the expectation of)
the gradient (282) obtained without the symmetry constraint is again symmetric because
of the symmetry of W and Λ, the result (356) allows us to use (282) for evaluating the
expectation (B.80) by making use of (64).

Having obtained the expectations (B.80) and (262), we can now evaluate the entropy,
which is given by H [Λ] = −E [lnW (Λ|W, ν)] and easily obtained in the form (B.82) by
making use of (B.80). The entropy (B.82) can be further simplified to

H [Λ] = D(D + 1)
2 ln 2 + D + 1

2 ln |W|+ ln ΓD
(ν

2

)
− ν −D − 1

2 ψD

(ν
2

)
+ νD

2 (284)

where we have used (281) and (262).
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Page 693

Paragraph −1, Line −4: “Gamma” should read “gamma” (without capitalization).

Page 693

Paragraph −1, Line −1: b = 1/2W should read b = 1/(2W ) for clarity.

Page 696

Equation (C.5): Replacing BT with A, we obtain a more general identity(
P−1 + AR−1B

)−1 AR−1 = PA (BPA + R)−1 . (285)

The identity (285) is necessary to show the push-through identity (C.6), which in turn can
be used to show Sylvester’s determinant identity (C.14). As suggested in the text, the above
identity (285) can be directly verified by right multiplying both sides by (BPA + R).
However, I would prefer to prove the general push-through identity (285) together with the
Woodbury identity (C.7) in terms of the inverse of a partitioned matrix, which we have already
seen in Section 2.3.1. To this end, we first introduce a square matrix M that is partitioned
into four submatrices so that

M =
(

A B
C D

)
(286)

where A and D are square (but not necessarily the same dimension) and then note that M
can be block diagonalized as(

I O
−CA−1 I

)(
A B
C D

)(
I −A−1B
O I

)
=
(

A O
O M/A

)
(287)

or (
I −BD−1

O I

)(
A B
C D

)(
I O

−D−1C I

)
=
(

M/D O
O D

)
(288)

if A or D is nonsingular, respectively, where we have written the Schur complement of M
with respect to A or D as

M/A ≡ D−CA−1B (289)

or
M/D ≡ A−BD−1C (290)
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respectively.39 The above block diagonalization identities (287) and (288) yield two versions
of the inverse partitioned matrix M−1, i.e.,(

A B
C D

)−1

=
(

I −A−1B
O I

)(
A−1 O
O (M/A)−1

)(
I O

−CA−1 I

)
(293)

=
(

A−1 + A−1B (M/A)−1 CA−1 −A−1B (M/A)−1

− (M/A)−1 CA−1 (M/A)−1

)
(294)

and (
A B
C D

)−1

=
(

I O
−D−1C I

)(
(M/D)−1 O

O D−1

)(
I −BD−1

O I

)
(295)

=
(

(M/D)−1 − (M/D)−1 BD−1

−D−1C (M/D)−1 D−1 + D−1C (M/D)−1 BD−1

)
(296)

respectively. Equating the right hand sides, we have, e.g.,

(M/D)−1 = A−1 + A−1B (M/A)−1 CA−1 (297)

and
− (M/A)−1 CA−1 = −D−1C (M/D)−1 . (298)

Substituting (289) and (290) into both sides and replacing D with −D, we finally have(
A + BD−1C

)−1 = A−1 −A−1B
(
D + CA−1B

)−1 CA−1 (299)

and (
D + CA−1B

)−1 CA−1 = D−1C
(
A + BD−1C

)−1 (300)

which are equivalent to (C.7) and (285), respectively.

Page 696

Paragraph 3, Line 2:
∑

n αnan = 0 should read
∑

n αnan = 0 (the right hand side should be
a zero vector 0).

Pages 696 and 697

Equations (C.8), (C.9), and (C.12): Note that, although determinant det(·) and trace Tr(·)
only apply to square matrices, the matrices A, B, and C in (C.8) and (C.9) themselves are
not necessarily square. On the other hand, in order for the determinant identity (C.12) to
hold, both A and B must be square.

39Note that the notation for the Schur complement is chosen to suggest that it has a flavor of division (Minka,
2000). In fact, taking the determinant on both sides of (287) and (288), we have from the definition (C.10) of the
determinant that

det(M) = det(A) det(M/A) (291)

and
det(M) = det(D) det(M/D) (292)

respectively.
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Page 697

Paragraph 1, Line 1: The lower ellipsis (. . .) should be centered (· · · ).

Page 697

Equation (C.17): It is clear that the definitions for the “vector derivative” (C.17) of a scalar
with respect to a vector and that (C.18) of a vector with respect to a vector contradict each
other. The vector derivative of the form (C.17) is usually called the gradient whereas (C.18) is
called the Jacobian (Minka, 2000). Note that (C.16) is a special case of (C.18) and thus the
Jacobian. In order to avoid ambiguity, we should use a different notation, say, ∇ for the
gradient, as defined in the following.

Gradient with respect to a vector Given a vector function y(x) = (y1(x), . . . , yM(x))T of a
vector x = (x1, . . . , xD)T, we write the gradient∇xy of y(x) with respect to x as a D ×M
matrix of partial derivatives so that

∇xy ≡
(
∂yj
∂xi

)
=


∂y1
∂x1

. . . ∂yM

∂x1... . . . ...
∂y1
∂xD

. . . ∂yM

∂xD

 . (301)

As a special case, we see that the gradient ∇xy of a scalar function y(x) with respect to a
column vector x is again a column vector of the same dimensionality as x, corresponding to
the right hand side of (C.17), i.e.,

∇xy =
(
∂y

∂xi

)
=


∂y
∂x1...
∂y
∂xD

 . (302)

Chain rule for gradient Note that the right hand side of the definition of the gradient (301)
is identical to the transpose of the Jacobian ∂y/∂x = (∂yi/∂xj) so that

∇xy =
(
∂y
∂x

)T

(303)

as a consequence of which the chain rule for the gradient is such that the intermediate
gradients are built up “towards the left,” i.e.,

∇xz(y) =
(
∂z
∂y

∂y
∂x

)T

= ∇xy∇yz. (304)

Since the chain rule (304) is handy when we compute the gradients of composite functions
(see below), I would suggest that it should also be pointed out in the “(Vector and) Matrix
Derivatives” section of Appendix C.
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Taylor series in terms of gradients At this point, one might wonder why we use the two
different forms of vector derivative that are identical up to the transposed layout, i.e., the
gradient∇xy and the Jacobian ∂y/∂x. As Minka (2000) points out, Jacobians are useful in
calculus while gradients are useful in optimization. For instance, we can write down the
Taylor series expansion (up to the second order) of a scalar function f(x) succinctly in terms
of the gradients as

f(x + εη) = f(x) + εηTg(x) + ε2

2 η
TH(x)η +O

(
ε3
)

(305)

where g(x) and H(x) are the gradient vector and the Hessian matrix of f(x), respectively,
so that

g(x) ≡ ∇xf(x) =


∂f
∂x1...
∂f
∂xD

 , H(x) ≡ ∇x∇xf(x) =


∂2f

∂x1∂x1
. . . ∂2f

∂x1∂xD... . . . ...
∂2f

∂xD∂x1
. . . ∂2f

∂xD∂xD

 . (306)

Page 697

Equation (C.19): Following the gradient notation (301), we see that (C.19) should read

∇
{
xTa

}
= ∇

{
aTx

}
= a (307)

where we have omitted the subscript x in what should be∇x.

Vector derivative identities Some other useful identities I would suggest to include are

∇
{
xTAx

}
= ∇Tr

(
xxTA

)
=
(
A + AT)x (308)

∇{Bx} = BT (309)
∇{φy} = ∇φyT + φ∇y (310)

where the matrices A and B are constant. Note that the term xTAx in (308) is a quadratic
form and thus the square matrix A is usually taken to be symmetric so that A = AT, in
which case we have

∇
{
xTAx

}
= 2Ax. (311)

Substituting A = I gives
∇‖x‖2 = 2x (312)

where ‖x‖ =
√

xTx is the norm of x.
We make use of the above identity (312) when, e.g., we take the gradient (114) of a

sum-of-squares error function of the form (113) where we also make use of (304) and (309).
The same result (114) can also be obtained by first expanding the square norm in (113) and
then differentiating the expanded terms with (311) and (309).

The product rule (310) is used when, e.g., we evaluate the Hessian (5.83) of a nonlinear
sum-of-squares error function (5.82), which generally takes the form

J = 1
2

N∑
n=1

ε2
n = 1

2 ‖ε‖
2 (313)
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where we have written ε = (ε1, . . . , εN)T. The gradient∇θ J and the Hessian∇θ∇θ J of the
error function J with respect to some parameters θ = (θ1, . . . , θM)T (on which the errors ε
depend nonlinearly) are given by

∇J =
N∑
n=1

εn∇εn = (∇ε) ε (314)

∇∇J =
N∑
n=1

{
∇εn (∇εn)T + εn∇∇εn

}
(315)

= ∇ε (∇ε)T +
[
∇ vec (∇ε)

]
(ε⊗ IM) (316)

where we have made the subscript θ of the gradient operators implicit; and written the
M × M identity matrix by IM . Here, the vectorization operator vec(·) and the Kronecker
product ⊗ are defined as

vec (V) ≡

v1
...

vL

 , A⊗B ≡

A11B · · · A1NB
... . . . ...

AM1B · · · AMNB

 (317)

where V = (v1, . . . ,vL); and A = (Aij) is anM ×N matrix (Magnus and Neudecker, 2007).
Note that the second form (316) of the Hessian∇∇J of the nonlinear error function J ,

which, however, does not necessarily lead to an efficient implementation (neither does that
of the gradient∇J), can be directly obtained by making use of the general product rule

∇{Rφ} = ∇φRT +∇ vec (R) (φ⊗ IM) (318)

whereM is the number of rows of R. One can easily show the product rule (318) through
its expanded form

∇

{
N∑
n=1

φnrn

}
=

N∑
n=1

∇φn rT
n +

N∑
n=1

φn∇rn (319)

where R = (r1, . . . , rN) and φ = (φ1, . . . , φN)T.40 Note also that the identities (309) and
(310) are special cases of (318).

40The product rule (318) can also be shown directly. For interested readers, I would like to note that the first
term in the right hand side of (318), i.e., the gradient through φ, directly follows from (309); and the second
term, i.e., the gradient through R, follows from the identity

Rφ = vec (Rφ) =
(
φT ⊗ IM

)
vec (R) (320)

which itself follows from the property of the vectorization operator and the Kronecker product (Magnus and
Neudecker, 2007)

vec (ABC) =
(
CT ⊗A

)
vec (B) . (321)

Taking the gradient of the right hand side of (320), we obtain

∇
{(
φT ⊗ IM

)
vec (R)

}
= ∇ vec (R) (φ⊗ IM ) (322)

where we have assumed φ to be constant and used the transpose identity of the Kronecker product (Magnus
and Neudecker, 2007)

(A⊗B)T = AT ⊗BT. (323)
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Finally, I would like to point out that the gradient of the inner product

∇
{
uTv

}
= ∇

{
vTu

}
= (∇u) v + (∇v) u (324)

is another special case of the general product rule (318). The identities (307) and (308) are, in
turn, special cases of (324).

Page 698

Equation (C.20): Although the Jacobian of a vector with respect to a vector is defined in
(C.18), the Jacobian of a matrix with respect to a scalar has not been defined. In the following,
we define the Jacobian of a matrix as well as the gradient of a scalar with respect to a matrix.
See (Minka, 2000) for more discussions.

Jacobian of a matrix The Jacobian ∂A/∂x of a matrix A = (Aij) with respect to a scalar x
is defined as a matrix of the same dimensionality as A so that

∂A
∂x
≡
(
∂Aij
∂x

)
(325)

which is analogous to (C.18) in that the partial derivatives are laid out according to the
numerator, i.e., A.

Gradient with respect to a matrix On the other hand, the gradient (301) is such that the
derivatives are laid out according to the denominator. In a similar analogy, we can define
the gradient∇Ay of a scalar y with respect to a matrix A as

∇Ay ≡
(
∂y

∂Aij

)
. (326)

Page 698

Equation (C.22): For this identity to be well-defined, it is necessary that we have det(A) > 0.
We should make this assumption clear. Or, if we adopt the absolute determinant notation (56)
for |A|, the identity (C.22) holds, in fact, for any nonsingular A such that det(A) 6= 0 as we
shall see shortly.

The section named “Eigenvector Equation” of Appendix C gives us a hint for a proof
of (C.22) where A is assumed to be symmetric positive definite so that A � 0. Although
the restricted proof outlined in PRML is indeed highly instructive, we need a more general
proof because we make use of this identity, e.g., in Exercise 2.34 without the assumptions
required by the restricted proof.41

41Note that one can easily extend the restricted proof of (C.22) for symmetric positive-definite matrices A in
terms of the eigenvalue decomposition, outlined in PRML, so as to use instead the singular value decomposition or
SVD (357) in order to show (C.22) for any nonsingular matrix A such that det(A) 6= 0. Here, I would however
like to present a proof in terms of Jacobi’s formula (327), which is more direct and general. I leave the proof of
(C.22) in terms of the SVD as an exercise for the reader. Hint: The right hand side of (C.22) can be written as
Tr
(
Σ−1∂Σ/∂x

)
where A = UΣVT is the SVD of A because it follows from the orthonormality (C.37) of U

that Tr(UT∂U/∂x) = 0 and similarly for V. Finally, note that the absolute determinant of A is equal to that
of Σ and thus to the product of the singular values σi > 0 such that Σ = diag (σi), i.e., |A| = |Σ| =

∏
i σi

where we have used (56).
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Jacobi’s formula To this end, we first show Jacobi’s formula, which is an identity that holds
for any square matrix A given by

∂

∂x
det (A) = Tr

(
A†∂A

∂x

)
(327)

where A† is the adjugate matrix of A. The (ij)-th element A†ij of the adjugate matrix A† is
given by

A†ij = (−1)i+j det
(
A(ji)) (328)

(beware that the superscript (ji) of A(ji) is not (ij) but it is “transposed”) where A(ij) (the
superscript (ij) is not “transposed” here) denotes a matrix obtained by removing the i-th
row and the j-th column of A.

From the well-known identity

AA† = A†A = det(A)I (329)

(consult a linear algebra textbook for a proof), we can write the inverse matrix A−1 in terms
of the adjugate matrix A† so that

A−1 = A†
det(A) (330)

if A is nonsingular so that det(A) 6= 0. Note also that the above identity (329) implies

det(A) =
∑
k

AikA
†
ki =

∑
k

A†jkAkj (331)

for any i and j. Substituting this identity (331) into the left hand side of (327) and noting
that, from the definition (328) of the adjugate matrix, A†ji is independent of Aik nor Akj for
any k, we have

∂

∂x
det (A) =

∑
ij

{
∂

∂Aij

∑
k

AikA
†
ki

}
∂Aij
∂x

=
∑
ij

{
∂

∂Aij

∑
k

A†jkAkj

}
∂Aij
∂x

(332)

=
∑
ij

A†ji
∂Aij
∂x

(333)

= Tr
(
∂A
∂x

A†
)

= Tr
(

A†∂A
∂x

)
(334)

which proves the identity (327).

Derivative of log absolute determinant Assuming thatA is nonsingular so that det(A) 6= 0,
we can evaluate the left hand side of (C.22) as

∂

∂x
ln |A| = 1

det (A)
∂

∂x
det (A) (335)

where we have used the notation (56) for |A|. Substituting (327), we obtain

∂

∂x
ln |A| = Tr

(
∂A
∂x

A−1
)

= Tr
(

A−1∂A
∂x

)
(336)

where we have used (330).
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Page 698

Equations (C.24) through (C.28): Since these derivatives are gradients of a scalar with respect
to a matrix A, the operator ∂

∂A should read∇A if we adopt the notation (326).

Matrix derivative identities For example, (C.24) should read

∇A Tr (AB) = ∇A Tr
(
ATBT) = BT (337)

where we have used the transpose and the cyclic identities of the trace operator Tr(·), i.e.,

Tr (A) = Tr
(
AT) , Tr (AB) = Tr (BA) (338)

respectively. As described in the text, the identity (337) directly follows from (C.23). At this
moment, I would like to point out an observation helpful for remembering (337). First, note
that the gradient of a scalar with respect to a matrix A is, by definition (326), a matrix of the
same dimensionality asA. On the other hand, in order for the traceTr (AB) to bemeaningful,
B must be of the same dimensionality as AT. Thus, (337) passes the “dimensionality test,”
meaning that all the matrix operations in (337) are meaningful. Note also that (C.25) and
(C.26) are special cases of (337).

Similarly, the gradient of the log (absolute) determinant (C.28) should read

∇A ln |A| = A−T (339)

where we have used (C.4) and defined

A−T ≡
(
AT)−1 =

(
A−1)T

. (340)

Again, if we adopt the notation (56) for |A|, we see that (339) holds for any nonsingular
matrix A such that det(A) 6= 0.

The identity (339) can be shown by identifying xwithAij in (336) whereAij is the (ij)-th
element of A; and then making use of (C.23), which can be stated more suitably for our
purpose here as

Tr
(
∂A
∂Aij

B
)

= Tr
(

B ∂A
∂Aij

)
= Bji. (341)

Here, the Jacobianmatrix ∂A/∂Aij is, by definition (325), amatrix of the same dimensionality
as A such that only the (ij)-th element is one whereas all the other elements are zero, i.e.,

∂A
∂Aij

=


j
...

i · · · 1 · · ·
...

 (342)

where all the elements omitted or denoted by dots (· · · ) are zero. Note that Svensén and
Bishop (2009) effectively make use of (341) in the solution of Exercise 2.34.

In addition to the above mentioned matrix derivative identities, I would suggest to
include the following:

∇A Tr
(
ABATC

)
= CTABT + CAB (343)

∇A Tr
(
A−1B

)
= −A−TBTA−T. (344)
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We use the identities (343) and (344), e.g., when we show (13.113) in Exercise 13.33 and (2.122)
in Exercise 2.34, respectively. It should also be noted that (C.27) is a special case of (343).

The identity (343) can be shown as follows. Assuming that B and C are constants, we
have

∂

∂x

{
ABATC

}
= ∂A

∂x
BATC + AB

(
∂A
∂x

)T

C. (345)

Taking the trace of the both sides gives

∂

∂x
Tr
(
ABATC

)
= Tr

(
∂A
∂x

BATC
)

+ Tr
(
∂A
∂x

BTATCT
)

(346)

where we have rearranged the factors inside the second trace Tr(·) in the right hand side by
making use of (338). We finally obtain (343) by identifying x with Aij and making use of
(341). The identity (344) follows similarly from

∂

∂x
Tr
(
A−1B

)
= −Tr

(
∂A
∂x

A−1BA−1
)

(347)

which itself follows from (C.21).

Symmetricmatrix derivatives So far, wehave consideredderivativeswith respect to amatrix
that is not symmetric in general. However, matrices for which we take derivatives in order
to, say, perform optimization (e.g., maximum likelihood) or evaluate expectations by making
use of (64) are often symmetric. For example, the covariance Σ of the multivariate Gaussian
distribution is symmetric positive definite. Whenwe derive themaximum likelihood solution
for Σ in Exercise 2.34, we ignore the symmetry constraint on Σ to calculate the derivatives
of the log likelihood with respect to Σ. The maximum likelihood solution ΣML is obtained
by solving necessary conditions that the derivatives should vanish, after which we find
ΣML to be symmetric positive definite. The fact that the solution ΣML is symmetric is not
a fortunate coincidence but a consequence of the symmetry in the necessary conditions
solved. In fact, even if we had imposed the symmetry constraint on Σ in the first place, we
would have obtained an equivalent set of equations to solve, giving the same solution. We
can understand why this is the case by considering derivatives with respect to a symmetric
matrix in more general terms as follows.

Let φ(A) be a scalar function of a square matrix A where A = (Aij) is not symmetric in
general so that Aij 6≡ Aji. As usual, we write the gradient of φ(A) with respect to A as

∇Aφ(A) =
(

∂

∂Aij
φ(A)

)
. (348)

Suppose that we want to evaluate the gradient of φ(S) where S = (Sij) is symmetric so that
Sij ≡ Sji. The derivative of φ(S) with respect to an off-diagonal element Sij where i 6= j

consists of two derivatives through Aij and Aji so that

∂

∂Sij
φ(S) = ∂

∂Aij
φ(S) + ∂

∂Aji
φ(S) (349)

where we have written
∂

∂Aij
φ(S) ≡ ∂

∂Aij
φ(A)

∣∣∣∣
A=S

. (350)
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The derivative of φ(S) with respect to an diagonal element Sii is given by

∂

∂Sii
φ(S) = ∂

∂Aii
φ(S). (351)

Thus, we can write

∇Sφ(S) = ∇Aφ(S) +∇Aφ(S)T − diag (∇Aφ(S)) (352)

where we have written
∇Aφ(S) ≡ ∇Aφ(A)|A=S . (353)

For example, if A and B are both symmetric in (337), we have

∇A Tr (AB) = 2B− diag(B). (354)

The identity (352) is, however, not very useful in practice. A more useful observation
can be made by considering equations obtained by setting the derivatives equal to zero.
Specifically, it readily follows from (349) and (351) that, if∇Aφ(S) is symmetric (which does
hold, say, for the necessary conditions for ΣML we mentioned above), we have

∇Sφ(S) = O ⇐⇒ ∇Aφ(S) = O (355)

which implies that we can solve∇Sφ(S) = O without the symmetry constraint on S, i.e., by
simply solving∇Aφ(S) = O and then obtain a solution S that is indeed symmetric.

When we evaluate expectations by making use of (64), we consider equations obtained
by setting the expected derivatives equal to zero. With much the same discussion as above,
if E [∇Aφ(S)] is symmetric, we have

E [∇Sφ(S)] = O ⇐⇒ E [∇Aφ(S)] = O. (356)

It should be noted here that the score function (63) occurring in (64) is defined only for
independent parameters. Therefore, if the parameters of interest are, say, a symmetric matrix
(e.g., the scale matrix W of the Wishart distribution is symmetric positive definite), we
must, strictly speaking, impose the symmetry constraint on the parameters. The equivalence
relation (356), however, allows us to safely ignore the symmetry constraint on S and use
E [∇Aφ(S)] = O instead.

Page 700

Paragraph 2, Line −1: The determinant of the orthogonal matrix U can be either positive
or negative so that we should write det(U) = ±1 (which is, if the notation (56) is adopted,
equivalent to |U| = 1). Although it is possible to take U such that det(U) = 1 (one can flip
the sign of det(U) by, say, flipping the sign of any one of the eigenvectors {ui}), there is no
point in doing so in practice theoretically nor numerically. In fact, it is easy to see that the
following discussion remains valid provided that U is orthogonal so that we have (C.37) but
not necessarily that det(U) = 1. Moreover, most software implementations of symmetric
eigenvalue decomposition only guarantee that U is orthogonal so that det(U) = ±1.
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Singular value decomposition In the special case where the matrix A is symmetric positive
semidefinite or A � 0, we can identify the eigenvalue decomposition (C.43) with the singular
value decomposition or SVD (Press et al., 1992; Golub and Van Loan, 2013) so that we can
use an SVD routine to compute the eigenvalue decomposition of A. The SVD is generally
defined for any real matrix P not necessarily square, say, of dimensionalityM ×N , so that
the SVD of P is given by

P = UΣVT =
R∑
i=1

σiuivT
i (357)

where U = (u1, . . . ,uM) and V = (v1, . . . ,vN) are orthogonal matrices of dimensionali-
tiesM ×M and N × N , respectively; Σ is anM × N diagonal matrix with nonnegative
diagonal elements, called the singular values, σ1 > · · · > σR > 0 arranged in descending
order; and R 6 min(M,N) is the rank of P. Note again that U and V are only guaranteed
to be orthogonal so that det(U) = ±1 and det(V) = ±1.

Page 700

The text following (C.41): Themultiplication byU can be interpreted as a rotation, a reflection,
or a combination of the two.

Page 705

Equation (D.8): It would be helpful if we make it clear that the left hand side of (D.8)
corresponds to the functional derivative so that we should modify (D.8) as

δF

δy(x) ≡
∂G

∂y
− d

dx

(
∂G

∂y′

)
= 0. (358)

Page 705

Paragraph −1, Line 1: Despite the statement, it is not that straightforward to extend the
results obtained here to higher dimensions. Although such an extension is not required in
PRML, it is useful when we analyze a particular type of constrained optimization problem
commonly found in computer vision applications such as optical flow (Horn and Schunck,
1981). Here, I would like to consider an extension of the calculus of variations to a system
ofD-dimensional Cartesian coordinates x = (x1, . . . , xD)T ∈ RD and find the form of the
functional derivative as well as a more general boundary condition for such a derivative to be
well-defined. To this end, we first review some identities concerning the divergence (Feynman
et al., 1964). The divergence of a vector field

p(x) =

p1(x)
...

pD(x)

 ∈ RD (359)

is a scalar field of the form

div p =
D∑
i=1

∂pi
∂xi
≡ ∇ · p (360)
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where we have omitted the coordinates x in the function arguments to keep the notation
uncluttered. For a differentiable vector field p(x) defined on some volume Ω ⊂ RD, the
divergence theorem (Feynman et al., 1964) states that∫

Ω
div p dV =

∮
∂Ω

p · n dS (361)

where the left hand side is the volume integral over the volume Ω; the right hand side is the
surface integral over its boundary ∂Ω; and n(x) is the outward unit normal vector of ∂Ω.
Assuming that the coordinates x = (x1, . . . , xD)T are Cartesian, we can write the volume
element as dV = dx1 · · · dxD ≡ dx and the inner product as p · n = pTn. Making use of
the divergence theorem (361) together with the following identity

div (φp) = ∇φTp + φ div p (362)

we obtain a multidimensional version of the “integration by parts” formula∫
Ω
∇φTp dx =

∮
∂Ω
φpTn dS −

∫
Ω
φ div p dx. (363)

Let us now consider a functional of the form

E [u(x)] =
∫

Ω
L (x, u(x),∇u(x)) dx (364)

where u(x) ∈ R is a function (scalar field) defined over some volume Ω ⊂ RD and
L(x, f,g) ∈ R is a function of x ∈ Ω, f ∈ R, and g ∈ RD. Thus, the functional E [u(x)] ∈ R
maps u(x) to a real number. As in the ordinary calculus, we can define the derivative of
a functional according to the calculus of variations (Feynman et al., 1964; Bishop, 2006). In
order to find the form of the functional derivative, we consider how E [u(x)] varies upon a
small change εη(x) in u(x) where η(x) is the “direction” of the change and ε is some small
constant. The first-order variation of E [u(x)] in the direction of η(x) can be evaluated as

δE[u; η] ≡ lim
ε→0

1
ε
{E[u+ εη]− E[u]} (365)

= lim
ε→0

1
ε

∫
Ω
{L (x, u+ εη,∇(u+ εη))− L (x, u,∇u)} dx (366)

=
∫

Ω

{
η
∂L

∂f
+∇ηT∇gL

}
dx (367)

where we have assumed that L(x, f,g) is differentiable with respect to both f and g; and we
have written

∂L

∂f
≡ ∂

∂f
L (x, u,∇u) , ∇gL ≡ ∇gL (x, u,∇u) . (368)

By making use of the multidimensional integration by parts (363), we can integrate the
second term in the right hand side of (367), giving

δE[u; η] =
∫

Ω
η

{
∂L

∂f
− div (∇gL)

}
dx +

∮
∂Ω
η∇gL

Tn dS. (369)
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In order for the functional derivative to be well-defined, we assume the surface integral term
in the variation (369) to vanish so that we have the following boundary condition∮

∂Ω
η∇gL

Tn dS = 0. (370)

The boundary condition (370) holds if

η(x) = 0 (371)

or
∇gL

Tn(x) = 0 (372)

for all x ∈ ∂Ω. The first condition (371) holds if we assume the Dirichlet boundary condition
for u(x)

u(x) = u0(x) (373)

where x ∈ ∂Ω, i.e., u(x) is assumed to be fixed to some value u0(x) at the boundary ∂Ω and
so is u(x) + εη(x) in (365), implying (371). Another common boundary condition for u(x) is
the Neumann boundary condition

∇u(x)Tn(x) = 0 (374)

where x ∈ ∂Ω. The Neumann boundary condition (374) is implied by the second condi-
tion (372) for the optical-flow energy functional as we shall see shortly. Having assumed that
the boundary condition (370) holds, we can write the first order variation (369) in the form

δE[u; η] =
∫

Ω
η
∂E

∂u(x)dx (375)

where we have written
∂E

∂u(x) ≡
∂L

∂f
− div (∇gL) . (376)

The volume integral in the right hand side of (375) can be seen as the inner product
between η(x) and ∂E/∂u(x), from which we conclude that the quantity ∂E/∂u(x) is what
should be called the functional derivative.42 A stationary point of a functional E[u(x)] is
a function u(x) such that the variation δE[u; η] vanishes in any direction η(x) and thus
satisfies the Euler-Lagrange equation given by

∂E

∂u(x) = 0. (377)

Finally, we present an application of the multidimensional calculus of variations to a dense
motion analysis technique called optical flow in the following. Suppose that, given a pair
of (grayscale) images I0(x) and I1(x) where x ∈ R2 that are taken at some discrete time
steps t = 0 and t = 1, respectively, we wish to find a motion vector field from I0(x) to I1(x)

u(x) =
(
u(x)
v(x)

)
(378)

42Here we use a notation for the functional derivative that is different from the one used in PRML. The
notation ∂E/∂u(x) employed here is more like an ordinary derivative and can be extended to the case of a
vector field u(x) analogously to the gradient as we shall see in (382).
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defined over x ∈ Ω ⊂ R2. Horn and Schunck (1981) sought for u(x) that minimizes an
energy functional that takes essentially the same form as

J [u(x)] = Jdata[u(x)] + αJsmooth[u(x)] (379)

where

Jdata[u(x)] = 1
2

∫
Ω

(I1(x + u(x))− I0(x))2 dx (380)

Jsmooth[u(x)] = 1
2

∫
Ω

(
‖∇u(x)‖2 + ‖∇v(x)‖2) dx. (381)

Here, the domain Ω is assumed to be continuous and is typically rectangular. We call the first
term Jdata[u(x)] in (379) the data-fidelity term; the second term Jsmooth[u(x)] the smoothness
(regularization) term; and the coefficient α the regularization parameter. According to
the multidimensional calculus of variations, a stationary point of the optical-flow energy
functional (379) satisfies Euler-Lagrange equations of the form

∇u(x)J ≡
(
∂J/∂u(x)
∂J/∂v(x)

)
= ∇u

{
ε (x,u(x))2

2

}
− α

(
div (∇u(x))
div (∇v(x))

)
= 0 (382)

where we have written
ε (x,u) = I1(x + u)− I0(x). (383)

For the functional derivatives ∂J/∂u(x) and ∂J/∂v(x) to be well-defined, let us assume
the boundary condition given by (372) for each functional derivative, which implies the
Neumann boundary condition for u(x), i.e.,

∇u(x)Tn(x) = 0, ∇v(x)Tn(x) = 0 (384)

for all x ∈ ∂Ω where ∂Ω is the boundary of Ω and n(x) is the outward unit normal vector of
∂Ω. Thus, solving the above Euler-Lagrange equations (382) with the Neumann boundary
condition (384), we obtain the desired motion vector field u(x). The Euler-Lagrange
equations given by (382) are elliptic partial differential equations (elliptic PDEs) and can be
solved numerically by a type of relaxation method such as the Gauss-Seidel method or the
(weighted) Jacobi method or by a more efficient multigrid technique (Press et al., 1992; Briggs
et al., 2000).

Page 708

Equation (E.3): The right hand side should be a zero vector 0 instead of a scalar zero 0.

Page 708

The text after (E.4): ∇xL = 0 should read ∇xL = 0 (the right hand side should be a zero
vector 0).

Page 709

Paragraph −2, Line 5: ∇f(x) = 0 should read∇f(x) = 0 (the right hand side should be a
zero vector 0).
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Page 716

Column 1, Entry −2: The second edition of An Introduction to Probability Theory and Its
Applications, Volume 2 by Feller was published in 1971 (not 1966, which is the year of
publication of the first edition). Also, “its” should read “Its” (with the first letter capitalized).

Page 716

Column 1, Entry −1: “The Feynman Lectures of Physics” should read “The Feynman Lectures
on Physics.”

Page 717

Column 2, Entry 7: “John Hopkins University Press” should read “The Johns Hopkins
University Press.”

Page 733

Column 1, Entry 6: “independent identically distributed” should read “independent and
identically distributed” (see also Section 1.2.4).

Page 733

Column 1, Entries 22 and 24: These duplicated entries should be consolidated into a single
entry for “independent and identically distributed” (i.i.d.).
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